Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:06:31.706Z Has data issue: false hasContentIssue false

AGE, FECUNDITY, WEIGHT, AND THE INTRINSIC RATE OF INCREASE OF THE LUPINE APHID MACROSIPHUM ALBIFRONS (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

B. D. Frazer
Affiliation:
Agriculture Canada, Research Station, Vancouver, British Columbia V6T 1X2
B. Gill
Affiliation:
Agriculture Canada, Research Station, Vancouver, British Columbia V6T 1X2

Abstract

The fecundity, survivorship, and rate of development of the lupine aphid Macrosiphum albifrons Essig were determined and summarized into life tables from which the intrinsic rate of increase was computed. The life tables, using a time scale in days, were converted to a variable life table model using a physiological time scale based on an estimated thermal threshold of development of 3.59° (± 0.587°). A method of determining age and fecundity of adult aphids was developed from weight and embryo content. The use of intrinsic rate of increase and of the method of aging in field population dynamics are discussed.

Résumé

La fécondité, la longévité et le taux de croissance du puceron du lupin Macrosiphum albifrons Essig ont été déterminés et résumés en tableaux de cycle biologique à partir desquels on a calculé le taux intrinsèque de multiplication. Les tableaux qui utilisent une échelle de temps en jours ont été convertis en un modèle de cycle biologique variable au moyen d’une échelle physiologique basée sur le seuil thermique estimatif de développement de 3,59° (± 0,587°). On a mis au point une méthode de détermination de l’âge et de la fécondité des pucerons adultes à partir du poids et du contenu de l’embryon. L’auteur examine l’utilisation du taux intrinsèque de multiplication et de la méthode de détermination de l’âge dans une perspective de dynamique des populations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, A. and Mackauer, M.. 1977. Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. Can. Ent. 109: 277284.CrossRefGoogle Scholar
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Dixon, A. F. G. and Wratten, S. D.. 1971. Laboratory studies on aggregation, size, fecundity in the black bean aphid, Aphis fabae Scop. Bull. ent. Res. 61: 97111.CrossRefGoogle Scholar
Frazer, B. D. 1972. Life tables and intrinsic rates of increase of apterous black bean aphids and pea aphids, on broad bean (Homoptera: Aphididae). Can. Ent. 104: 17171722.CrossRefGoogle Scholar
Frazer, B. D. 1977. Plant virus epidemiology and computer simulation of aphid populations. Chap. 17, pp. 413–431 in Harris, K. F. and Marmorosch, K. (Eds.), Aphids as Virus Vectors. Academic Press, New York, San Francisco, London. 559 pp.Google Scholar
Gilbert, N. and Gutierrez, A. P.. 1973. A plant-aphid-parasite relationship. J. Anim. Ecol. 42: 323340.CrossRefGoogle Scholar
Gilbert, N. and Hughes, R. D.. 1971. A model of an aphid population — three adventures. J. Anim. Ecol. 40: 525534.CrossRefGoogle Scholar
Kempton, R. A., Lowe, H. J. B., and Bintcliffe, E. J. B.. 1980. The relationship between fecundity and adult weight in Myzus persicae. J. Anim. Ecol. 49: 917926.CrossRefGoogle Scholar
Laughlin, R. 1965. Capacity for increase: a useful population statistic. J. Anim. Ecol. 34: 7791.CrossRefGoogle Scholar
Mackauer, M. 1973. The population growth of the pea aphid biotype R1 on broad bean and pea (Homoptera:Aphididae). Z. angew. Ent. 74: 343351.CrossRefGoogle Scholar
Mackauer, M. 1976. Genetic problems in the production of biological control agents. A. Rev. Ent. 21: 364385.CrossRefGoogle Scholar
Murdie, G. 1969 a. Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris. Trans. R. ent. Soc. Lond. 121: 423442.CrossRefGoogle Scholar
Murdie, G. 1969 b. The biological consequences of decreased size caused by crowding or rearing temperatures in apterae of the pea aphid, Acyrthosiphon pisum Harris. Trans. R. ent. Soc. Lond. 121: 443455.CrossRefGoogle Scholar
Pradhan, S. 1946. Insect population studies. IV Dynamics of temperature effect on insect development. Proc. natn. Inst. Sci. India 12: 385404.Google Scholar
Siddiqui, W. H., Barlow, C. A., and Randolph, P. A.. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisum (Homopters: Aphididae). Can. Ent. 105: 145156.CrossRefGoogle Scholar
Smith, C. F. and Parron, C. S.. 1978. An annotated list of Aphididae (Homoptera) of North America. Tech. Bull. N.C. agric. Exp. Stn 255. 428 pp.Google Scholar
Taylor, L. R. 1975. Longevity, fecundity and size: control of reproductive potential in a polymorphic migrant, Aphis fabae Scop. J. Anim. Ecol. 44: 135163.CrossRefGoogle Scholar
Wellings, P. W., Leather, S. R., and Dixon, A. F. G.. 1980. Seasonal variation in reproductive potential: A programmed feature of aphid life cycles. J. Anim. Ecol. 49: 975985.CrossRefGoogle Scholar
Wratten, S. D. 1977. Reproductive strategy of winged and wingless morphs of the aphids Sitobion avenae and Metopolophium dirhodum. Ann. appl. Biol. 85: 319331.CrossRefGoogle ScholarPubMed