Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:57:49.135Z Has data issue: false hasContentIssue false

2-Phenylethanol: context-specific aggregation or sex-attractant pheromone of Boisea rubrolineata (Heteroptera: Rhopalidae)

Published online by Cambridge University Press:  02 April 2012

Joseph J. Schwarz
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Gerhard Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Western boxelder bugs, Boisea rubrolineata (Barber), form large aggregations on pistillate boxelder, Acer negundo L. (Aceraceae), host trees with maturing seeds, and cluster on warm, sunlit surfaces prior to overwintering. We have recently shown that B. rubrolineata is attracted to the host-tree semiochemicals phenylacetonitrile and 2-phenethyl acetate. We report results of chemical analyses and laboratory bioassays suggesting that aggregation and sexual communication in B. rubrolineata are mediated by 2-phenylethanol. This compound serves as an aggregation pheromone for females, males, and 5th-instar nymphs in midsummer, and in males it appears to serve as a sex-attractant pheromone in early spring. As an aggregation pheromone, 2-phenylethanol originates from the feces of seed-feeding females and males and (or) the ventral abdominal gland of males. As a sex-attractant pheromone, it originates from the ventral abdominal gland of males that emerge from overwintering diapause. Aggregations of B. rubrolineata in the fall and winter are mediated by other as yet unknown pheromones.

Résumé

Les punaises de l'érable négondo de l'ouest, Boisea rubrolineata (Barber) (Heteroptera: Rhopalidae) forment de grands rassemblements sur les arbres hôtes pistillés, les érables négondo, Acer negundo L. (Aceraceae), porteurs de graines en maturation, et se regroupent sur des surfaces chaudes et ensoleillées avant l'hivernage. Nous avons récemment démontré que B. rubrolineata est attiré par les produits sémiochimiques de l'arbre hôte, le phénylacétonitrile et l'acétate de 2-phénétyle. Nous présentons maintenant des résultats d'analyses chimiques et de bioessais en laboratoire qui laissent croire que les regroupements et la communication sexuelle chez B. rubrolineata se font par l'intermédiaire du phényl-2-éthanol. Ce produit sert d'hormone de regroupement au milieu de l'été chez les femelles, les mâles et les larves de 5e stade et il semble jouer le rôle de phéromone d'attraction sexuelle produite par les mâles au début du printemps. Comme phéromone de rassemblement, le phényl-2-éthanol provient des féces des femelles et des mâles qui se nourrissent de graines et(ou) de la glande abdominale ventrale des mâles. Comme hormone d'attraction sexuelle, le phényl-2-éthanol provient de la glande abdominale ventrale des mâles qui émergent de leur diapause hivernale. Les rassemblements de B. rubrolineata en automne et en hiver se font par l'intermédiaire d'autres phéromones encore non identifiées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertazzi, E., Cardillo, R., Servi, S., and Zucchi, G. 1994. Biogeneration of 2-phenylethanol and 2-phenylethyl acetate important aroma components. Biotechnology Letters, 16: 491496. doi: 10.1007/BF01023331.Google Scholar
Aldrich, J.R. 1988. Chemical ecology of the Heteroptera. Annual Review of Entomology, 33: 211238. doi:10.1146/annurev.en.33.010188.001235.CrossRefGoogle Scholar
Aldrich, J.R., Blum, M.S., and Duffey, S.S. 1976. Male specific natural products in the bug, Leptoglossus phyllopus: chemistry and possible function. Journal of Insect Physiology, 22: 12011206. doi:10.1016/0022-1910(76)90094-9.Google Scholar
Aldrich, J.R., Blum, M.S., and Fales, H.M. 1979. Species-specific natural products of adult male leaf-footed bugs (Hemiptera: Heteroptera). Journal of Chemical Ecology, 5: 5362. doi:10.1007/BF00987687.CrossRefGoogle Scholar
Aldrich, J.R., Carroll, S.P., Lusby, W.R., Thompson, M.J., Kochansky, J.P., and Waters, R.M. 1990 a. Sapindaceae, cyanolipids, and bugs. Journal of Chemical Ecology, 16: 199210. doi:10.1007/BF01021279.Google Scholar
Aldrich, J.R., Carroll, S.P., Oliver, J.E., Lusby, W.R., Rudmann, A.A., and Waters, R.M. 1990 b. Exocrine secretions of scentless plant bugs: Jadera, Boisea, and Niesthrea species (Hemiptera: Heteroptera: Rhoplaidae). Biochemical Systematics and Ecology, 18: 369376. doi:10.1016/0305-1978(90)90010-D.Google Scholar
Aplin, R.T., and Birch, M.C. 1970. Identification of odorous compounds from male Lepidoptera. Experientia, 26: 11931194. PMID:5485272 doi: 10.1007/BF01897958.CrossRefGoogle ScholarPubMed
Bestmann, H.J., Vostrowsky, O., and Platz, H. 1977. Pheromones XII. Male sex pheromone of noctuids (Lepidoptera). Experientia, 33: 874875. PMID:891760 doi:10.1007/BF01951254.CrossRefGoogle Scholar
Birch, M.C., Grant, G.G., and Brady, U.E. 1976. Male scent brush of Peridroma saucia: chemistry of secretion. Annals of the Entomological Society of America, 69: 491492.Google Scholar
Blatt, S.E., and Borden, J.H. 1996. Evidence for a male produced aggregation pheromone in the western conifer seed bug, Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae). The Canadian Entomologist, 128: 777778. doi:10.4039/Ent128777-4.Google Scholar
Blum, M.S. 1996. Semiochemical parsimony in Arthropoda. Annual Review of Entomology, 41: 353374. PMID:15012333 doi:10.1146/annurev.en.41.010196.002033.CrossRefGoogle ScholarPubMed
Borden, J.H. 1997. Disruption of semiochemical-mediated aggregation in bark beetles. In Insect pheromone research: new directions. Edited by Cardé, R.T. and Minks, A.K.. Chapman and Hall Publishers, New York. pp. 421438.CrossRefGoogle Scholar
Caldwell, R.L., and Rankin, M.A. 1974. Separation of migratory from feeding and reproduction behavior in Oncopeltus fasciatus. Journal of Comparative Physiology, 88: 383394. doi:10.1007/BF00694701.Google Scholar
Carroll, S.P. 1988. Contrasts in reproductive ecology between temperate and tropical populations of Jadera haematoloma, a mate-guarding hemipteran (Rhopalidae). Annals of the Entomological Society of America, 81: 5463.Google Scholar
Carroll, S.P., and Loye, J.E. 1987. Specialization of Jadera species (Hemiptera: Rhopalidae) on the seeds of Sapindaceae (Sapindales), and coevolutionary response of defense and attack. Annals of the Entomological Society of America, 80: 373378.CrossRefGoogle Scholar
Carroll, S.P., Klassen, S.P., and Dingle, H. 1998. Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug. Evolutionary Ecology, 12: 955968. doi:10.1023/A: 1006568206413.Google Scholar
Dingle, H., and Arora, G. 1973. Experimental studies of migration in bugs of the genus Dysdercus. Oecologia (Berlin), 12: 119140. doi:10.1007/BF00345512.Google Scholar
Gries, G., Smirle, M.J., Leufvén, A., Miller, D.R., Borden, J.H., and Whitney, H.S. 1990. Conversion of phenylalanine to toluene and 2-phenylethanol by the pine engraver Ips pini (Say) (Coleoptera, Scolytidae). Experientia, 46: 329331. doi:10.1007/BF01951781.Google Scholar
Guterman, I., Masci, T., Chen, X., Negre, F., Pichersky, E., Dudareva, N., Weiss, D., and Vainstein, A. 2006. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferases produce phenylethyl acetate and benzyl acetate in petunia flowers. Plant Molecular Biology, 60: 555563. PMID:16525891 doi:10.1007/s11103-005-4924-x.CrossRefGoogle ScholarPubMed
Jacobson, M., Adler, V.E., Kishaba, A.N., and Priesner, E. 1976. 2-Phenylethanol, a presumed sexual stimulant produced by the male cabbage looper moth, Trichoplusia ni. Experientia, 32: 964966. PMID:60255 doi:10.1007/BF01933912.CrossRefGoogle ScholarPubMed
Kohno, K., and Bui Thi, N. 2005. Comparison of the life history strategies of three Dysdercus true bugs (Heteroptera: Pyrrhocoridae), with special reference to their seasonal host plant use. Entomological Science, 8: 313322. doi:10.1111/j.1479-8298.2005.00130.x.CrossRefGoogle Scholar
Kuwahara, Y. 1980. Isolation and identification of male secreted possible sex pheromone from a pyralid moth, Aphomia gularis Zeller (Pyraliae: Lepidoptera). Applied Entomology and Zoology, 15: 478485.CrossRefGoogle Scholar
Lacey, E.S., Moreira, J.A., Millar, J.G., and Hanks, L.M. 2008. A male-produced aggregation blend consisting of alkanediols, terpenoids, and an aromatic alcohol from the cerambycid beetle Megacyllene caryae. Journal of Chemical Ecology, 34: 408417. PMID:18253798 doi:10.1007/s10886-008-9425-3.Google Scholar
Long, W.H. 1928. Why only staminate box-elders should be used for shade trees. Journal of Economical Entomology, 21: 433434.Google Scholar
Lorenzo, M.G., and Lazzari, C.R. 1996. The spatial pattern of defecation in Triatoma infestans and the role of feces as a chemical mark of the refuge. Journal of Insect Physiology, 42: 903907. doi:10.1016/0022-1910(96)00008-X.Google Scholar
Millar, J.G. 2005. Pheromones of true bugs. Topics in Current Chemistry, 240: 3784.Google Scholar
Miller, D.R., Lindgren, B.S., and Borden, J.H. 2005. Dose-dependent pheromone responses of mountain pine beetle in stands of lodgepole pine. Environmental Entomology, 34: 10191027. doi:10.1603/0046-225X(2005)034[1019:DPROMP]2.0.CO;2.CrossRefGoogle Scholar
Pasteels, J.M., Grégoire, J.C., and Rowell-Rahier, M. 1983. The chemical ecology of defense in arthropods. Annual Review of Entomology, 28: 263289. doi:10.1146/annurev.en.28.010183.001403.Google Scholar
Rankin, M.A., and Riddiford, L.M. 1977. Hormonal control of migratory flight in Oncopeltus fasciatus: the effects of the corpus cardiacum, corpus allatum, and starvation on migration and reproduction. General and Comparative Endocrinology, 33: 309321. PMID:562814 doi:10.1016/0016-6480(77)90045-4.CrossRefGoogle ScholarPubMed
Rankin, M.A., and Riddiford, L.M. 1978. Significance of haemolymph juvenile hormone titer changes in timing of migration and reproduction in adult Oncopeltus fasciatus. Journal of Insect Physiology, 24: 3138. doi:10.1016/0022-1910(78)90008-2.Google Scholar
Robert, A., Peppuy, A., Semon, E., Boyer, F.D., Lacey, M.J., and Bordereau, C. 2004. A new C12 alcohol identified as a sex pheromone and a trail following pheromone in termites: the diene (Z,Z)-dodeca-3,6-dien-1-ol. Naturwissenschaften, 91: 3439. PMID:14740102 doi:10.1007/s00114-003-0481-9.CrossRefGoogle Scholar
SAS Institute Inc. 2007. SASH. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schowalter, T.D. 1986. Overwintering aggregation of Boisea rubrolineatus (Heteroptera: Rhopalidae) in western Oregon. Environmental Entomology, 15: 10551056.Google Scholar
Schwarz, J.J., Gries, R., Vickers, N., Hillier, K., and Gries, G. 2009. Phenology of semiochemicalmediated host foraging by the boxelder bug, Boisea rubrolineata, an aposematic seed predator, Journal of Chemical Ecology, 35: 5870. PMID:19123035 doi:10.1007/s10886-008-9575-3.CrossRefGoogle ScholarPubMed
Smith, R.C., and Shepherd, L. 1937. The life history and control of the boxelder bug in Kansas. Transactions of the Kansas Academy of Science, 40: 143159. doi:10.2307/3625403.Google Scholar
Tinker, M.E. 1952. The seasonal behavior and ecology of the boxelder bug, Leptocoris trivittatus, in Minnesota. Ecology, 33: 407414. doi:10.2307/1932836.CrossRefGoogle Scholar
Van den Dool, H., and Kratz, P.D. 1963. A generalization of retention index system including linear temperature programmed gas–liquid partition chromatography. Journal of Chromatography, 2: 463471. doi:10.1016/S0021-9673(01)80947-X.Google Scholar
Vuralhan, Z., Morais, M.A., Tai, S.-L., Piper, M.D.W., and Pronk, J.T. 2003. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Applied Environmental Microbiology, 69: 45344541. PMID:12902239 doi:10.1128/AEM.69.8.4534-4541. 2003.Google Scholar
Weatherston, J., and Percy, J.E. 1976. The biosynthesis of phenethyl alcohol in the male bertha armyworm Mamestra configurata. Insect Biochemistry, 6: 413417. doi:10.1016/0020-1790(76) 90045-7.Google Scholar
Wittmann, C., Hans, M., and Bluemke, W. 2002. Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast, 19: 13511363. PMID: 12402244 doi:10.1002/yea.920.CrossRefGoogle ScholarPubMed
Yoder, K.M., and Robinson, W.H. 1990. Seasonal abundance and habits of the boxelder bug, Boisea trivittata (Say), in an urban environment. Proceedings of the Entomological Society of Washington, 92: 802807.Google Scholar
Zar, J.H. 1999. Biostatistical analysis. 4th ed. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar