Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:45:09.611Z Has data issue: false hasContentIssue false

ON APPROXIMATELY MIDCONVEX FUNCTIONS

Published online by Cambridge University Press:  28 April 2004

ATTILA HÁZY
Affiliation:
Institute of Mathematics, University of Miskolc, H-3515 Miskolc-Egyetemváros, [email protected]
ZSOLT PÁLES
Affiliation:
Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, [email protected]
Get access

Abstract

A real-valued function $f$ defined on an open, convex set $D$ of a real normed space is called $(\varepsilon,\delta)$-midconvex if it satisfies $$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2} + \varepsilon|x-y| + \delta, \quad\hbox{for } x,y\in D.$$ The main result of the paper states that if $f$ is locally bounded from above at a point of $D$ and is $(\varepsilon,\delta)$-midconvex, then it satisfies the convexity-type inequality $$f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda)f(y)+2\delta +2\varepsilon \varphi(\lambda)|x-y| \quad\hbox{for } x,y\in D, \, \lambda\in[0,1],$$ where $\varphi:[0,1]\to{\mathbb R}$ is a continuous function satisfying $$\max(-\lambda\log_2\lambda,\,-(1-\lambda)\log_2(1-\lambda)) \le\varphi(\lambda)\le 1.4\max(-\lambda\log_2\lambda,\,-(1-\lambda)\log_2(1-\lambda))$$. The particular case $\varepsilon=0$ of this result is due to Ng and Nikodem (Proc. Amer. Math. Soc. 118 (1993) 103–108), while the specialization $\varepsilon=\delta=0$ yields the theorem of Bernstein and Doetsch (Math. Ann. 76 (1915) 514–526).

Keywords

Type
Papers
Copyright
© The London Mathematical Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants T-038072 and T-043080, and by the Higher Education, Research and Development Fund (FKFP) Grant 0215/2001.