A NONOSCILLATION THEOREM FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DECAYING COEFFICIENTS
Published online by Cambridge University Press: 14 June 2001
Abstract
The purpose of this paper is to give sufficient conditions for all nontrivial solutions of the nonlinear differential equation x″ +a(t)g(x) = 0 to be nonoscillatory. Here, g(x) satisfies the sign condition xg(x) > 0 if x ≠ 0, but is not assumed to be monotone increasing. This differential equation includes the generalized Emden–Fowler equation as a special case. Our main result extends some nonoscillation theorems for the generalized Emden–Fowler equation. Proof is given by means of some Liapunov functions and phase-plane analysis.
- Type
- NOTES AND PAPERS
- Information
- Copyright
- © The London Mathematical Society 2001
Footnotes
- 1
- Cited by