Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T02:54:13.886Z Has data issue: false hasContentIssue false

COMPLEX CONVEXITY AND VECTOR-VALUED LITTLEWOOD–PALEY INEQUALITIES

Published online by Cambridge University Press:  08 October 2003

OSCAR BLASCO
Affiliation:
Departamento de Análysis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, [email protected]
MIROSLAV PAVLOVIĆ
Affiliation:
Matematicki fakultet, 11001 Belgrade, pp 550, Serbia, [email protected]
Get access

Abstract

Let $2\le p <\infty$, and let $X$ be a complex Banach space. It is shown that $X$ is $p$-uniformly PL-convex if and only if there exists $\lambda >0$ such that $ \|f\|_{H^p(X)}\,{\ge}\, (\|f(0)\|^p+\lambda\int_{\mathbb D} (1-|z|^2)^{p-1}\|f^{\prime}(z)\|^p\,dA(z))^{1/p}$, for all $f\in H^p(X)$. Applications to embeddings between vector-valued BMOA spaces defined via Poisson integral or Carleson measures are provided.

Keywords

Type
Notes and Papers
Copyright
© The London Mathematical Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)