Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Davies, E. B.
1999.
The Maz’ya Anniversary Collection.
p.
55.
Burenkov, Victor I.
and
Lamberti, Pier Domenico
2007.
Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators.
Journal of Differential Equations,
Vol. 233,
Issue. 2,
p.
345.
DAUDERT, BRITTA
and
LAPIDUS, MICHEL L.
2007.
LOCALIZATION ON SNOWFLAKE DOMAINS.
Fractals,
Vol. 15,
Issue. 03,
p.
255.
Burenkov, V. I.
Lamberti, P. D.
and
Lanza de Cristoforis, M.
2008.
Spectral stability of nonnegative self-adjoint operators.
Journal of Mathematical Sciences,
Vol. 149,
Issue. 4,
p.
1417.
Burenkov, Victor I.
and
Lamberti, Pier Domenico
2008.
Spectral stability of Dirichlet second order uniformly elliptic operators.
Journal of Differential Equations,
Vol. 244,
Issue. 7,
p.
1712.
Burenkov, Victor I.
and
Lamberti, Pier Domenico
2009.
Spectral stability of the -Laplacian.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 71,
Issue. 5-6,
p.
2227.
Burenkov, Victor
and
Lamberti, Pier Domenico
2009.
Sobolev Spaces in Mathematics II.
Vol. 9,
Issue. ,
p.
69.
Lemenant, Antoine
and
Milakis, Emmanouil
2010.
Quantitative stability for the first Dirichlet eigenvalue in Reifenberg flat domains in RN.
Journal of Mathematical Analysis and Applications,
Vol. 364,
Issue. 2,
p.
522.
Barbatis, Gerassimos
Burenkov, Victor I.
and
Lamberti, Pier Domenico
2010.
Around the Research of Vladimir Maz'ya II.
Vol. 12,
Issue. ,
p.
23.
Di Meglio, Guglielmo
2012.
Some stability estimates for the symmetrized first eigenfunction of certain elliptic operators.
Zeitschrift für angewandte Mathematik und Physik,
Vol. 63,
Issue. 5,
p.
835.
Burenkov, Victor I.
and
Feleqi, Ermal
2012.
Spectral stability estimates for the eigenfunctions of second order elliptic operators.
Mathematische Nachrichten,
Vol. 285,
Issue. 11-12,
p.
1357.
Barbatis, Gerassimos
and
Lamberti, Pier Domenico
2012.
SPECTRAL STABILITY ESTIMATES FOR ELLIPTIC OPERATORS SUBJECT TO DOMAIN TRANSFORMATIONS WITH NON‐UNIFORMLY BOUNDED GRADIENTS.
Mathematika,
Vol. 58,
Issue. 2,
p.
324.
Grebenkov, D. S.
and
Nguyen, B.-T.
2013.
Geometrical Structure of Laplacian Eigenfunctions.
SIAM Review,
Vol. 55,
Issue. 4,
p.
601.
Abatangelo, Laura
Felli, Veronica
and
Terracini, Susanna
2014.
On the sharp effect of attaching a thin handle on the spectral rate of convergence.
Journal of Functional Analysis,
Vol. 266,
Issue. 6,
p.
3632.
Burenkov, V. I.
Gol'dshtein, V.
and
Ukhlov, A.
2015.
Conformal spectral stability estimates for the Dirichlet Laplacian.
Mathematische Nachrichten,
Vol. 288,
Issue. 16,
p.
1822.
Pang, Michael M. H.
2015.
Sharp bounds for domain perturbations of Dirichlet Laplacians defined on smooth domains.
Semigroup Forum,
Vol. 90,
Issue. 1,
p.
1.
Burenkov, V. I.
Gol'dshtein, V.
and
Ukhlov, A.
2016.
Conformal spectral stability estimates for the Neumann Laplacian.
Mathematische Nachrichten,
Vol. 289,
Issue. 17-18,
p.
2133.
Bogosel, Beniamin
and
Bucur, Dorin
2023.
On the polygonal Faber-Krahn inequality.
Journal de l’École polytechnique — Mathématiques,
Vol. 11,
Issue. ,
p.
19.
van den Berg, M.
and
Bucur, D.
2024.
On the Torsion Function for Simply Connected, Open Sets in $$\mathbb {R}^2$$.
Potential Analysis,