Let S be a compact, topological semigroup with identity. Suppose D, L and R are the D, L and R classes of some x ∈ S. Let (L, α., L/H), (R, β, R/H), (D, γ, D/H) and (D, δ, D/R) by the fibre spaces gotten where α, β γ an δ are the natural maps. It is shown that (D, γ, D/H) has topologically the same structure as the fibre space associated with (L, α, L/H) by R. Also if (L, α, L/H) is locally trivial (locally a cartesian product) then so is (D, δ, D/R) and if both (L, α, L/H) and (R, β, R/H) are locally trivial then so is (D, γ, D/H).