Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T23:51:17.002Z Has data issue: false hasContentIssue false

Well-bounded operators on general Banach spaces

Published online by Cambridge University Press:  17 April 2009

Qingping Cheng*
Affiliation:
Department of Mathematics, Jingzhou Teacher's College, Jingzhou City, Hubei, China
*
Current address: Department of Mathematics, Jingzhou Teacher’s College, Jingzhou, Hubei, China
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Benzinger, H., Berkson, E. and Gillespie, T.A., ‘Spectral families of projections, semigroups, and differential oeprators’, Trans. Amer. Math. Soc. 275 (1983), 431475.CrossRefGoogle Scholar
[2]Berkson, E. and Dowson, H.R., ‘On uniquely decomposable well-bounded operators’, Proc. London Math. Soc. 3 22 (1971), 339358.CrossRefGoogle Scholar
[3]Cheng, Q. and Doust, I., ‘Well-bounded operators on nonreflexive Banach spaces’, Proc. Amer. Math. Soc. 126 (1996), 799808.Google Scholar
[4]Cheng, Q. and Doust, I., ‘The dual theory of well-bounded operators’, J. Operator Theory 37 (1997), 3550.Google Scholar
[5]Pisier, G., ‘Counterexample to a conjecture of Grothendieck’, Act. Math. 151 (1983), 181208.CrossRefGoogle Scholar
[6]Ricker, W., ‘Spectral operators of scalar-type in Grothendieck spaces with the Dunford-Pettis property’, Bull. London Math. Soc. 17 (1985), 268270.CrossRefGoogle Scholar
[7]Ricker, W., ‘Well-bounded operators of type (B) in a class of Banach spaces’, J. Austral. Math Soc. Ser. A 32 (1987), 399408.CrossRefGoogle Scholar
[8]Ricker, W., ‘Well-bounded operators of type (B) in H.I. spaces’, Acta. Sci. Math. (Szeged) 59 (1994), 475488.Google Scholar
[9]Ringrose, J.R., ‘On well-bounded operators II’, Proc. London Math. Soc. 3 13 (1963), 613638.CrossRefGoogle Scholar
[10]Turner, J.K., ‘On well-bounded and decomposable oeprators’, Proc. London Math. Soc. 337 (1978), 521544.CrossRefGoogle Scholar