Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T06:20:15.054Z Has data issue: false hasContentIssue false

Varieties of groups and of completely simple semigroups

Published online by Cambridge University Press:  17 April 2009

Mario Petrich
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Norman R. Reilly
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Completely simple semigroups form a variety if we consider them both with the multiplication and the operation of inversion. Denote the lattice of all varieties of completely simple semi-groups by L(CS) and that of varieties of groups by L(G). We prove that the mappings VVG and VV v G are homomorphisms of L(CS) onto L(G) and the interval [G, CS], respectively. The homomorphism V → (VG, V v G) is an isomorphism of L(CS) onto a subdirect product. We explore different properties of the congruences on L(CS) induced by these homomorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Clifford, A.H., “The free completely regular semigroup on a set”, J. Algebra 59 (1979), 434451.CrossRefGoogle Scholar
[2]Howie, J.M., An introduction to semigroup theory (London Mathematical Society Monographs, 7. Academic Press, London, New York, San Francisco, 1976).Google Scholar
[3] Е.И.Нлейман [Kleĭman, E. I.], “Нкоторые сзойства структуры многообразий икверсных полугрупп” [Some properties of the lattice of varieties of inverse semigroups], Ural. Gos Univ. Mat. Zap. 10 (1977), no. 3Issled. po Sovremen. Algebre, 5672, 216–217. “Замечание к статье Е.и. Клеймана ‘Неноторые свойства структуры многообразий инвврсных полугрупп’” [Correction to Some properties of the lattice of varieties of inverse semigroups], Ural. Gos. Univ. Mat. Zap 11 (1979), 207.Google Scholar
[4]Neumann, Hanna, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[5]Petrich, Mario, Introduction to semigroups (Charles E. Merrill, Columbus, Ohio, 1973).Google Scholar
[6] В.В. Расин [Rasin, V. V.], “Свободкые вполне простые полугруппы” [Free completely simple semigroups], Ural. Gos. Univ. Mat. Zap. 11 (1979), no. 3, 140151.Google Scholar