No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
Let A be an elliptic (partial) differential operator of order 2m on a compact manifold with boundary Г. Let B be a normal system of m differential boundary operators on Г. Assume all manifolds and coefficients are arbitrarily smooth. We construct sesquilinear forms J in terms of which there are equivalent variational formulations of the natural boundary value problems determined by A and B with solutions in Sobolev spaces HS (M), 0 < s < 2m. Such forms are also constructed for problems with mixed boundary conditions. The variational formulation permits localization of a priori estimates and the interchange of existence and uniqueness questions between the boundary value problem and an associated adjoint problem.