No CrossRef data available.
Article contents
Vacuum spacetimes with a spacelike Killing vector
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

- Type
- Abstracts of Australasian Ph.D. Theses
- Information
- Copyright
- Copyright © Australian Mathematical Society 1993
References
[1]Fackerell, E.D. and Kerr, R., ‘Einstein vacuum field equations with a single non-null Killing vector’, Gen. Relativity Gravitation 3 (1991), 861–876.CrossRefGoogle Scholar
[2]Geroch, R., ‘A method for generating solutions of Einstein's equations’, J. Math. Phys. 12 (1971), 918–924.CrossRefGoogle Scholar
[3]Hall, G.S., Morgan, T. and Perjés, Z., ‘Three-dimensional spacetimes’, Gen. Relativity Gravitation 19 (1987), 1137–1147.CrossRefGoogle Scholar
[4]Hearn, A.C., REDUCE User's manual version 3.3 (The RAND Corporation, Santa Monica, 1988).Google Scholar
[6]Kersten, P.H.M., Infinitesimal symmetries: a computational approach, Ph.D. thesis (University of Twente, Enschede, The Netherlands, 1985).Google Scholar
[7]Kramer, D., Stephani, H., Herlt, E. and MacCallum, M., Exact solutions of Einstein's field equations (Cambridge University Press, 1980).Google Scholar
[8]Olver, P.W., Applications of Lie groups to differential equations (Springer-Verlag, Berlin, Heidelberg, New York, 1986).CrossRefGoogle Scholar
[9]Ovsiannikov, L.V., Group analysis of differential equations (Academic Press, 1982).Google Scholar
[10]Perjés, Z., ‘SU(1,1) spin coefficients’, Acta Phys. Acad. Scientiarum Hungaricae 32 (1972), 207–220.CrossRefGoogle Scholar