Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T09:27:29.807Z Has data issue: false hasContentIssue false

Universality on higher order Hardy spaces

Published online by Cambridge University Press:  17 April 2009

L. Bernal-González
Affiliation:
Departamento de Análisis Matemático, Facultad de Matematicas, Apdo 1160, Avenida Reina Mercedes, 41080 Sevilla, Spain, e-mail: [email protected]
A. Bonilla
Affiliation:
Departamento de Análisis Matemático, Universidad de la Laguna, C/Astrofísco Fco. Sánchez, s/n, 38271 La Laguna, Spain, e-mail: [email protected]
M. C. Calderón-Moreno
Affiliation:
Departamento de Análisis Matemático, Facultad de Matematicas, Apdo 1160, Avenida Reina Mercedes, 41080 Sevilla, Spain, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Seidel-Walsh-type theorem about the universality of a sequence of derivation-composition operators generated by automorphisms of the unit disk in the setting of the higher order Hardy spaces. Moreover, some related positive or negative assertions involving interpolating sequences and sequences between two tangent circles are established for the class of bounded functions in the unit disk. Our statements improve earlier ones due to Herzog and to the first and third authors.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Bernal-González, L., ‘Densely hereditarily hypercyclic sequences and large hypercyclic manifolds’, Proc. Amer. Math. Soc. 127 (1999), 32793285.CrossRefGoogle Scholar
[2]Bernal-González, L. and Calderón-Moreno, M.C., ‘A Seidel-Walsh theorem with linear differential operators’, Arch. Math. 72 (1999), 367375.CrossRefGoogle Scholar
[3]Bernal-González, L. and Montes-Rodríguez, A., ‘Universal functions for composition operators’, Complex Variables Theorey Appl. 27 (1995), 4756.Google Scholar
[4]Birkhoff, C.D., ‘Démonstration d'un théorème élémentaire sur les fonctions entières’, C. R. Acad. Sci. Paris 189 (1929), 473475.Google Scholar
[5]Duren, P.L., Theory of Hp spaces (Academic Press, New York, 1970).Google Scholar
[6]Garnett, J.B., Bounded analytic functions (Academic Press, New York, 1981).Google Scholar
[7]Gorkin, P. and Mortini, R., ‘Universal Blaschke products’, Math. Proc. Cambridge Philos. Soc. 136 (2004), 175184.CrossRefGoogle Scholar
[8]Grosse-Erdmann, K.-G., ‘Holomorphe Monster und universelle Funktionen’, Mitt. Math. Sem. Giessen 176 (1987).Google Scholar
[9]Grosse-Erdmann, K.-G., ‘Universal families and hypercyclic operators’, Bull. Amer. Math. Soc. 36 (1999), 345381.CrossRefGoogle Scholar
[10]Grosse-Erdmann, K.-G., ‘Recent developments in hypercyclicity’, RACSAM Rev. R. Acad. Cienc. Exactas. Fis. Nat. Ser. A Mat. 97 (2003), 273286.Google Scholar
[11]Herzog, G., ‘On a theorem of Seidel-Walsh’, Period. Math. Hungar. 30 (1995), 205210.CrossRefGoogle Scholar
[12]Hoffman, K., Banach spaces of analytic functions (Dover Publications, New York, 1988).Google Scholar
[13]Klein, U., ‘Hardy spaces of higher order with special consideration of ’ (Travaux mathématiques VI, Luxembourg), Centre universitaire de Luxembourg (1994), 1100.Google Scholar
[14]Seidel, W.P. and Walsh, J.L., ‘On approximation by Euclidean and non-Euclidean translates of an analytic function’, Bull. Amer. Mat. Soc. 47 (1941), 916920.CrossRefGoogle Scholar