Published online by Cambridge University Press: 12 September 2013
For $n\in \mathbb{Z} $ and
$A\subseteq \mathbb{Z} $, let
${r}_{A} (n)= \# \{ ({a}_{1} , {a}_{2} )\in {A}^{2} : n= {a}_{1} + {a}_{2} , {a}_{1} \leq {a}_{2} \} $ and
${\delta }_{A} (n)= \# \{ ({a}_{1} , {a}_{2} )\in {A}^{2} : n= {a}_{1} - {a}_{2} \} $. We call
$A$ a unique representation bi-basis if
${r}_{A} (n)= 1$ for all
$n\in \mathbb{Z} $ and
${\delta }_{A} (n)= 1$ for all
$n\in \mathbb{Z} \setminus \{ 0\} $. In this paper, we construct a unique representation bi-basis of
$ \mathbb{Z} $ whose growth is logarithmic.