Published online by Cambridge University Press: 17 April 2009
A unified theory of continuous and certain non-continuous functions, initiated in an earlier paper, is further elaborated. The proposed theory provides a common platform for dealing simultaneously with continuous functions and a host of non-continuous functions including lower (upper) semicontinuous functions, almost continuous functions, weakly continuous functions (encountered in functional analysis), c-continuous functions, δ-continuous functions, semiconnected functions, H-continuous functions s-continuous functions, ε-continuous functions of Klee and several other variants of continuity.