Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:01:22.305Z Has data issue: false hasContentIssue false

TWO NONTRIVIAL WEAK SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPIŃSKI GASKET

Published online by Cambridge University Press:  12 December 2011

DENISA STANCU-DUMITRU*
Affiliation:
Department of Mathematics, University of Craiova, 200585 Craiova, Romania (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study a Dirichlet problem involving the weak Laplacian on the Sierpiński gasket, and we prove the existence of at least two distinct nontrivial weak solutions using Ekeland’s Variational Principle and standard tools in critical point theory combined with corresponding variational techniques.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Barlow, M. T. and Perkins, E. A., ‘Brownian motion on the Sierpinski gasket’, Probab. Theory Related Fields 79 (1988), 543624.CrossRefGoogle Scholar
[2]Breckner, B., Rădulescu, V. and Varga, C., ‘Infinitely many solutions for the Dirichlet problem on the Sierpinski gasket’, Anal. Appl. 9 (2011), 235248.CrossRefGoogle Scholar
[3]Ekeland, I., ‘On the variational principle’, J. Math. Anal. Appl. 17 (1974), 324353.CrossRefGoogle Scholar
[4]Falconer, K., ‘Semilinear PDEs on self-similar fractals’, Comm. Math. Phys. 206 (1999), 235245.CrossRefGoogle Scholar
[5]Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd edn (John Wiley and Sons, Chichester, 2003).CrossRefGoogle Scholar
[6]Falconer, K. and Hu, J., ‘Nonlinear elliptical equations on the Sierpinski gasket’, J. Math. Anal. Appl. 240 (1999), 552573.CrossRefGoogle Scholar
[7]Kigami, J., ‘A harmonic calculus on the Sierpiński spaces’, Japan J. Appl. Math. 6 (1989), 259290.CrossRefGoogle Scholar
[8]Kigami, J., ‘Harmonic calculus on p.c.f. self-similar sets’, Trans. Amer. Math. Soc. 335 (1993), 721755.Google Scholar
[9]Kigami, J., Analysis on Fractals (Cambridge University Press, Cambridge, 2001).CrossRefGoogle Scholar
[10]Kozlov, S. M., ‘Harmonization and homogenization on fractals’, Comm. Math. Phys. 153 (1993), 339357.CrossRefGoogle Scholar
[11]Kusuoka, S., ‘A Diffusion Process on a Fractal’, Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985) (Academic Press, Boston, MA, 1987), pp. 251274.Google Scholar
[12]Sierpiński, W., ‘Sur une courbe dont tout point est un point de ramification’, Comptes Rendus (Paris) 160 (1915), 302305.Google Scholar
[13]Strichartz, R. S., Differential Equations on Factals: A Tutorial (Princeton University Press, Princeton, NJ, 2006).CrossRefGoogle Scholar