Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T20:11:06.621Z Has data issue: false hasContentIssue false

TRANSVERSAL INFINITESIMAL AUTOMORPHISMS ON KÄHLER FOLIATIONS

Published online by Cambridge University Press:  02 February 2012

SEOUNG DAL JUNG*
Affiliation:
Department of Mathematics and Research Institute for Basic Sciences, Jeju National University, Jeju 690-756, Korea (email: [email protected])
HUILI LIU
Affiliation:
Department of Mathematics, Northeastern University, 110004 Shenyang, PR China (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ℱ be a Kähler foliation on a compact Riemannian manifold M. If the transversal scalar curvature of ℱ is nonzero constant, then any transversal conformal field is a transversal Killing field; and if the transversal Ricci curvature is nonnegative and positive at some point, then there are no transversally holomorphic fields.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

Footnotes

The first author was supported by the National Research Foundation of Korea (NRF) Grant NRF-2011-616-C00040, and the second author was supported by NSFC no. 11111140377.

References

[1]Alvarez López, J. A., ‘The basic component of the mean curvature of Riemannian foliations’, Ann. Global Anal. Geom. 10 (1992), 179194.CrossRefGoogle Scholar
[2]Jung, S. D., ‘Transversal infinitesimal automorphisms for non-harmonic Kähler foliation’, Far East J. Math. Sci. (FJMS) Special Volume (2000), Part II (Geometry and Topology) 169177.Google Scholar
[3]Jung, S. D., ‘Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form’, J. Geom. Phys. 57 (2007), 12391246.CrossRefGoogle Scholar
[4]Jung, M. J. and Jung, S. D., ‘Riemannian foliations admitting transversal conformal fields’, Geom. Dedicata 133 (2008), 155168.CrossRefGoogle Scholar
[5]Jung, S. D., Lee, K. R. and Richardson, K., ‘Generalized Obata theorem and its applications on foliations’, J. Math. Anal. Appl. 376 (2011), 129135.CrossRefGoogle Scholar
[6]Jung, S. D. and Richardson, K., ‘Transverse conformal Killing forms and a Gallot–Meyer theorem for foliations’, Math. Z., doi:10.1007/s00209-010-0800-8.CrossRefGoogle Scholar
[7]Kamber, F. W. and Tondeur, Ph., ‘Harmonic foliations’, in: Proc. National Science Foundation Conference on Harmonic Maps, Tulance, Dec. 1980, Lecture Notes in Mathematics, 949 (Springer, New York, 1982), pp. 87121.Google Scholar
[8]Kamber, F. W. and Tondeur, Ph., ‘Infinitesimal automorphisms and second variation of the energy for harmonic foliations’, Tohoku Math. J. (2) 34 (1982), 525538.CrossRefGoogle Scholar
[9]Nishikawa, S. and Tondeur, Ph., ‘Transversal infinitesimal automorphisms for harmonic Kähler foliations’, Tohoku Math. J. (2) 40 (1988), 599611.CrossRefGoogle Scholar
[10]Pak, J. S. and Yorozu, S., ‘Transverse fields on foliated Riemannian manifolds’, J. Korean Math. Soc. 25 (1988), 8392.Google Scholar
[11]Tashiro, Y., ‘On conformal and projective transformations in Kählerian manifolds’, Tohoku Math. J. (2) 14 (1962), 317320.CrossRefGoogle Scholar
[12]Tondeur, Ph., Foliations on Riemannian Manifolds (Springer, New York, 1988).CrossRefGoogle Scholar
[13]Yano, K., ‘On harmonic and Killing vector fields’, Ann. of Math. (2) 55 (1952), 3845.CrossRefGoogle Scholar
[14]Yorozu, S. and Tanemura, T., ‘Green’s theorem on a foliated Riemannian manifold and its applications’, Acta Math. Hungar. 56 (1990), 239245.CrossRefGoogle Scholar