Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:52:10.506Z Has data issue: false hasContentIssue false

Third Engel groups and the Macdonald-Neumann conjecture

Published online by Cambridge University Press:  17 April 2009

S. Bachmuth
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California, USA.
H.Y. Mochizuki
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There exists a non-solvable group which is third Engel. More generally, the existence of a non-solvable group in which every n-generator subgroup is nilpotent of class at most 2n - 1 is confirmed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1971

References

[1]Bachmuth, S., Mochizuki, H.Y., Walkup, D.W., “Construction of a nonsolvable group of exponent 5”, Word problems (edited by Boone, W.W., Lyndon, R.C., Cannonito, F.B.. North-Holland, Amsterdam; in press).Google Scholar
[2]Golod, E.S., “On nil-algebras and residually finite p-groups” (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 273276.Google Scholar
[3]Gupta, N.D., “Third Engel 2-groups are soluble”, Canad. Math. Bull. (to appear).Google Scholar
[4]Gupta, Narain D. and Weston, Kenneth W., “On groups of exponent four”, J. Algebra. 17 (1971), 5966.CrossRefGoogle Scholar
[5]Heineken, Hermann, “Engelsche Elemente der Länge drei”, Illinois J. Math. 5 (1961), 681707.CrossRefGoogle Scholar
[6]Heineken, Hermann, “über ein Levisches Nilpotenzkriterium”, Arch. Math. 12 (1961), 176178.CrossRefGoogle Scholar
[7]Herstein, I.N., Topics in ring theory (Lecture notes, Univ. Chicago, Chicago, 1965).Google Scholar
[8]Higgins, P.J., “Lie rings satisfying the Engel condition”, Proc. Cambridge Philos. Soc. 50 (1954), 815.CrossRefGoogle Scholar
[9]Higman, Graham, “On finite groups of exponent five”, Proc. Cambridge Philos. Soc. 52 (1956), 381390.CrossRefGoogle Scholar
[10]Macdonald, I.D. and Neumann, B.H., “A third-Engel 5-group”, J. Austral. Math. Soc. 7 (1967), 555569.CrossRefGoogle Scholar
[11]Neumann, Hanna, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar