Published online by Cambridge University Press: 17 April 2009
A review of the development of the theory of existence and uniqueness of solutions to initial-value problems for mostly reduced versions of the nonlinear Maxwell-Boltzmann equation with a cut-off of intermolecular interaction, precedes the formulation and discussion of a somewhat generalized initial-value problem for the full nonlinear Maxwell-Boltzmann equation, with or without a cut-off. This is followed by a derivation of a new existence-uniqueness result for a particular Cauchy problem for the full nonlinear Maxwell-Boltzmann equation with a cut-off, under the assumption that the monatomic Boltzmann gas in the unbounded physical space X is acted upon by a member of a broad class of external conservative forces with sufficiently well-behaved potentials, defined on X and bounded from below. The result represents a significant improvement of an earlier theorem by this author which was until now the strongest obtained for Cauchy problems for the full Maxwell-Boltzmann equation. The improvement is basically due to the introduction of equivalent norms in a Banach space, the definition of which is connected with an exponential function of the total energy of a free-streaming molecule.