Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T22:27:12.440Z Has data issue: false hasContentIssue false

A test function theorem and apporoximation by pseudopolynomials

Published online by Cambridge University Press:  17 April 2009

C. Badea
Affiliation:
Department of Mathematics, University of Craiova, Str. A.I. Cuza, No. 13, 1100-Craiova, Romania
I. Badea
Affiliation:
Department of Mathematics, University of Craiova, Str. A.I. Cuza, No. 13, 1100-Craiova, Romania
H. H. Gonska
Affiliation:
Department of Mathematics and Computer Science, Drexel University, Philadelphia, PA 19104., U.S.A.Department of Mathematics, University of Duisburg, D-4100 Duisburg 1, West Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Korovkin-type theorem on approximation of bivariate functions in the space of B-continuous functions (introduced by K. Bögel in 1934). As consequences, some sequences of uniformly approximating pseudopolynomials are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Badea, I., “Modulul de continuitate în sens Bögel şi unele aplicatii în approximarea printr-un operator Bernstein”, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech., (2) 18 (1973), 6978.Google Scholar
[2]Badea, I., “Modulul de oscilaţie pentru funcţii de douǎ variabile şi unele aplicaţii în approximarea prin operatori Bernstein”, An. Univ. Craiova, Ser. a V-a, 2 (1974), 4354.Google Scholar
[3]Badea, I., “Asupra unei teoreme de aproximare uniforma prin pseudo polinoame de tip Bernstein”, An. Univ. Craiova, Ser. a V-a, 2 (1974), 5558.Google Scholar
[4]Badea, I., Aproximarea functiilor- vectoriale de una şi douǎ variabile prin polinoame Bernstein, Rezumatul tezei de doctorat, Universitatea di Craiova, Craiova: Reporgrafia Universitǎţii din Craiova 1974.Google Scholar
[5]Badea, I. and Oprea, M., “Asupra unei aproximari cu polinoame de tip Bernstein”, Bul. Inst. Petrol. şi Gaze, 4 (1976), 8386.Google Scholar
[6]Bögel, K., “Mehrdimensionale Differentiation von Funktionen mehrerer Veränderlicher”, J. Reine Angew. Math. 170 (1934), 197217.CrossRefGoogle Scholar
[7]Bögel, K., “Über mehrdimensionale Differentiation, Integration und beschränkte Variation”, J. Reine Angew. Math., 173 (1935), 529.CrossRefGoogle Scholar
[8]Bögel, K., “Über die mehrdimensionale Differentiation”, Jahresber. Deutsch. Mat.-Verein., (2) 65 (1962), 4571.Google Scholar
[9]Brudnyǐ, Ju. A., “Approximation of functions of n variables by quasipolynomials” (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., (3) 34 (1970), 564583.Google Scholar
[10]Delvos, F.J. and Schempp, W., “The method of parametric extension applied to right invertible operators”, Numer. Funct. Anal. Optim., 6 (1983), 135148.CrossRefGoogle Scholar
[11]Dobrescu, E. and Matei, I., “Aproximarea prin polinoame de tip Bernstein a funcţiilor bidimensional continue”, An. Univ. Timişoara, Ser. Stiinţ. Mat.-Fiz., 4 (1966), 8590.Google Scholar
[12]Gonska, H.H., “On approximation in C (X)”, in: Constructive Theory of Functions (Proc. Inst. Conf.Varna1984; ed. by Sendov, Bl. et al. ), 364369. Sofia: Publishing House of the Bulgarian Academy of Sciences 1984.Google Scholar
[13]Gonska, H.H. and Jetter, K., “Jackson type theorems on approximation by trigonometric and algebraic pseudopolynomials”, J. Approx. Theory. (to appear)Google Scholar
[14]Gordon, W.J. and Riesenfeld, R.F., “Bernstein-Bézier methods for the computer-aided design of free-form curves and surfaces”, J. Assoc. Comput. Mach., 21 (1974), 293310.CrossRefGoogle Scholar
[15]Marchaud, A., “Différences et dérivées d' une fonction de deux variables”, C.R. Acad. Sci. 178 (1924), 14671470.Google Scholar
[16]Marchaud, A., “Sur les dérivées et sur les différences des fonctions de variables réelles”, J. Math. Pures Appl., 6 (1927), 337425.Google Scholar
[17]Nicolescu, M., “Aproximarea funcţiunilor global continue prin pseudopolinoame”, Bul. Stiinţ. Ser. Mat. Fiz. Chim., (10) 2 (1950), 795798.Google Scholar
[18]Nicolescu, M., “Contribuţii la o analizǎ de tip hiperbolic a planului”, Stud. Cerc. Mat. (1–2) 3 (1952), 751.Google Scholar
[19]Popoviciu, T., “Sur les solutions bornées et les solutions mesurables de certaines equations fonctionnelles”, Mathematica (Cluj), 14 (1938), 47106.Google Scholar
[20]Stancu, D.D., “Aproximare a funcţiilor de douǎ şi mai multe variabile printr-o clasǎ de polinoame de tip Bernstein”, Stud. Cerc. Mat., (2) 22 (1970), 335345.Google Scholar
[21]Stancu, D.D., “Approximation of bivariate functions by means of some Bernstein-type operators”, in: Multivariate Approximation (Proc. Sympos. Durham 1977; ed. by Handscomb, D.C.), 189208. New York - San Francisco - London: Acad. Press (1978).Google Scholar
[22]Vaida, D., “Extensiunea teoremei de aproximare a lui K. Weierstrass la funcţiile hiperbolic continue de douǎ variabile”, Com. Acad. R. P. Romine, (10) 6 (1956), 11731178.Google Scholar
[23]Volkov, V.I., “On the convergence of a sequence of linear positive operators in the space of continuous funtions of two variables” (Russian), Dokl. Akad. Nauk SSSR, 115 (1957),. 1719.Google Scholar