Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:48:52.514Z Has data issue: false hasContentIssue false

TANGENT BUNDLES, MONOIDAL THEORIES AND WEIL ALGEBRAS

Published online by Cambridge University Press:  03 May 2018

POON LEUNG*
Affiliation:
School of Mathematics, Macquarie University, North Ryde 2113, New South Wales, Australia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Barr, M. and Wells, C., ‘Toposes, triples, and theories’, in: Grundlehren der Mathematischen Wissenschaften (Springer, New York, 1985).Google Scholar
Bondy, A. J. and Murty, U. S. R., Graph Theory with Applications (Wiley, New York, 1991).Google Scholar
Cockett, R. and Cruttwell, G., ‘Differential structure, tangent structure and synthetic differential geometry’, Appl. Categ. Structures 22(2) (2014), 331417.Google Scholar
Hitchin, N., Differentiable Manifolds, Oxford UK Course C3.2b Lecture Notes (Oxford University, 2012), available at https://people.maths.ox.ac.uk/hitchin/hitchinnotes/manifolds2012.pdf.Google Scholar
Kolar, I., Michor, P. W. and Slovak, J., Natural Operations in Differential Geometry (Springer, Berlin Heidelberg, 2010).Google Scholar
Rosický, J., ‘Abstract tangent functors’, Diagrammes 12(3) (1984), JR1JR11.Google Scholar
Weil, A., ‘Théorie des points proches sur les variétés differentielles’, in: Colloque de Topologie et Géométrie Différentielle, Strasbourg, 1953 (Centre National de la Recherche Scientifique, Paris, 1953), 111117.Google Scholar