Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T09:19:26.381Z Has data issue: false hasContentIssue false

SUMSETS CONTAINING A TERM OF A SEQUENCE

Published online by Cambridge University Press:  18 September 2023

MIN CHEN
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China e-mail: [email protected]
MIN TANG*
Affiliation:
School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, PR China
Rights & Permissions [Opens in a new window]

Abstract

Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers with $s_{n+1}/s_{n}$ approaching $\alpha $ as $n\rightarrow \infty $ and let $\beta>\max (\alpha , 2)$. We show that for all sufficiently large positive integers l, if $A\subset [0, l]$ with $l\in A$, $\gcd A=1$ and $|A|\geq (2-{k}/{\lambda \beta })l/(\lambda +1)$, where $\lambda =\lceil {k}/{\beta }\rceil $, then $kA\cap S\neq \emptyset $ for $2<\beta \leq 3$ and $k\geq {2\beta }/{(\beta -2)}$ or for $\beta>3$ and $k\geq 3$.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

For two sets $A, B$ of integers and $a\in \mathbb {Z}$ , define

$$ \begin{align*}A+B=\{a+b: a\in A, b\in B\},\end{align*} $$

and

$$ \begin{align*}a-B=\{a-b: b\in B\}.\end{align*} $$

For a positive integer $h\geq 2$ , let

$$ \begin{align*}hA=\{a_{1}+\cdots+a_{h}:a_{1}, \ldots, a_{h}\in A\}.\end{align*} $$

A set A of nonnegative integers is called normal if $0\in A$ and the greatest common divisor of all elements of A is 1.

In 1990, Erdős and Freiman [Reference Erdős and Freiman2] proved a conjecture of Erdős and Freud: if a set $A$ of integers is a subset of $[1,n]$ and $|A|>{n}/{3}$ , then a power of 2 can be written as the sum of elements of A. In 1989, Nathanson and Sárközy [Reference Nathanson and Sárközy6] improved this result by showing that 3504 elements of A is enough. Finally, Lev [Reference Lev4] obtained the best possible result that a power of 2 is the sum of at most four elements of A. In 2004, Abe [Reference Abe1] extended Lev’s result to a power of m. In 2006, Pan [Reference Pan7] generalised the results of Lev and Abe.

Theorem 1.1 [Reference Pan7, Theorem 1].

Let $k, m, n\geq 2$ be integers. Let A be a normal subset of $[0, n]$ satisfying

$$ \begin{align*}|A|>\frac{1}{l+1}\bigg(\bigg(2-\frac{k}{lm}\bigg)n+2l\bigg),\end{align*} $$

where $l=\lceil k/m\rceil $ . If $m\geq 3$ , or $m=2$ and k is even, then $kA$ contains a power of m.

Pan conjectured that Theorem 1.1 still holds for $m=2$ and k is odd. In 2012, Wu and Chen [Reference Wu and Chen8] made some progress towards this conjecture.

In 2010, Kapoor [Reference Kapoor3] extended Pan’s result for $2A$ to general sequences. He proved the following two results.

Theorem 1.2 [Reference Kapoor3, Theorem 1].

Let $\{a_{1}, a_{2}, a_{3}, \ldots \}$ be an unbounded sequence of positive integers. Assume that $a_{n+1}/a_{n}$ approaches some limit $\alpha $ as $n\rightarrow \infty $ , and let $\beta>2$ be some real number greater than $\alpha $ . Then for sufficiently large $x\geq 0$ , if A is a set of nonnegative integers less than or equal to x containing $0$ and satisfying

$$ \begin{align*}|A|\geq\bigg(1-\frac{1}{\beta}\bigg)x,\end{align*} $$

then $2A$ contains an element of $\{a_{n}\}$ .

Theorem 1.3 [Reference Kapoor3, Theorem 2].

Let $\{a_{1}, a_{2}, a_{3}, \ldots \}$ be an unbounded sequence of positive integers such that $a_{n+1}/a_{n}\leq \beta $ for some constant $\beta \geq 2$ . Then for any $x\geq 0$ , if A is a set of nonnegative integers less than or equal to x containing $0$ and satisfying

$$ \begin{align*}|A|>\bigg(1-\frac{1}{\beta}\bigg)x+\frac{1}{\beta}\cdot\bigg\lfloor\frac{a_{1}-1}{2}\bigg\rfloor+1,\end{align*} $$

then $2A$ contains an element of $\{a_{n}\}$ .

We extend Pan’s result for $kA\ (k\geq 3)$ to general sequences that grow like the powers of a real number greater than or equal to 2.

Theorem 1.4. Let $\beta> 2$ be a real number and let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers such that $\lim _{n\to \infty } {s_{n+1}}/{s_{n}}=\alpha <\beta $ . Let $k\geq 3$ be a positive integer. For large enough l, let A be a normal subset of $[0, l]$ with $l\in A$ such that

$$ \begin{align*}|A|\geq\frac{1}{\lambda+1}\bigg(2-\frac{k}{\lambda\beta}\bigg)l,\end{align*} $$

where $\lambda =\lceil {k}/{\beta }\rceil $ . If $2<\beta \leq 3$ , then $kA\cap S\neq \emptyset $ for all $k\geq {2\beta }/{(\beta -2)}$ . If $\beta>3$ , then $kA\cap S\neq \emptyset $ for all $k\geq 3$ .

Theorem 1.5. Let $\beta>2$ be a real number and let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers such that $s_{n+1}/s_{n}\leq \beta $ . Let $k\geq 3$ and l be positive integers such that

(1.1) $$ \begin{align} l\bigg(\frac{k}{\beta}-\lambda+1\bigg)\geq\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+1. \end{align} $$

Let A be a normal subset of $[0, l]$ with $l\in A$ satisfying

(1.2) $$ \begin{align} |A|>\frac{2}{ \lambda\beta(\lambda+1)} \bigg(\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\frac{\beta}{2}\bigg)+\frac{1}{\lambda+1} \bigg(\bigg(2-\frac{k}{\lambda\beta}\bigg)l+2\lambda\bigg), \end{align} $$

where $\lambda =\lceil {k}/{\beta }\rceil $ . If $2<\beta <3$ , then $kA\cap S\neq \emptyset $ for all $k\geq {2\beta }/{(\beta -2)}$ . If $\beta \geq 3$ , then $kA\cap S\neq \emptyset $ for all $k\geq 3$ .

2 Lemmas

Lemma 2.1 [Reference Lev5, Corollary 1].

If A is a normal subset of $[0, l]$ with $l\in A$ and $\rho =\lceil (l-1)/(|A|-2)\rceil -1$ , then

$$ \begin{align*} |hA|\geq \begin{cases} B_{h}(|A|) &\text{if } h\leq \rho,\\ B_{\rho}(|A|)+(h-\rho)l &\text{if } h\geq \rho,\\ \end{cases} \end{align*} $$

where $B_{h}(x)=\tfrac 12h(h+1)(x-2)+h+1$ .

Lemma 2.2. Let $\beta \geq 2$ be a real number. Let $S=\{s_{1}, s_{2}, \ldots \}$ be an unbounded sequence of positive integers such that $s_{n+1}/s_{n}\leq \beta $ . Let a, b be two positive integers. Suppose A and B are sets of integers satisfying $A\subseteq [0, a]$ , $B\subseteq [0, b]$ and $0\in A\cap B$ . If

(2.1) $$ \begin{align} |A|+|B|>3+\frac{2}{\beta}\bigg\lfloor \frac{s_{1}-1}{2}\bigg\rfloor+\max\bigg\{a, b, \bigg(1-\frac{1}{\beta}\bigg)(a+b)\bigg\}, \end{align} $$

then $(A+B)\cap S\neq \emptyset $ .

Proof. We may assume that $a\leq b$ . If $0\leq b<s_{1}$ , put $x_{0}=\lfloor (s_{1}-1)/2\rfloor $ . If $b<x_{0}$ , then

$$ \begin{align*} |A|+|B|&>2+\frac{2}{\beta}\bigg\lfloor \frac{s_{1}-1}{2}\bigg\rfloor+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &>2+\frac{1}{\beta}(a+b)+\bigg(1-\frac{1}{\beta}\bigg)(a+b) =2+a+b, \end{align*} $$

which is a contradiction since $|A|+|B|\leq a+b+2$ . Thus, $x_{0}\leq b<s_{1}$ . If $a+b<s_{1}$ , then

$$ \begin{align*} |A|+|B|&>3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &\geq 3+\frac{1}{\beta}(s_{1}-2)+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &\geq3+\frac{1}{\beta}(a+b-1)+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &\geq3-\frac{1}{\beta}+a+b > a+b+2, \end{align*} $$

which is again impossible. Thus, $a+b\geq s_{1}$ . Then,

$$ \begin{align*} |A|+|B|&>3+\frac{1}{\beta}(s_{1}-2)+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &\geq3+\frac{1}{\beta}s_{1}-\frac{2}{\beta}+\bigg(1-\frac{1}{\beta}\bigg)s_{1}\\ &=3-\frac{2}{\beta}+s_{1} \geq s_{1}+2. \end{align*} $$

Since $B, s_{1}-A\subseteq [0, s_{1}]$ , we must have $s_{1}\in A+B$ .

Next, we consider $b\geq s_{1}$ . Choose r such that $s_{r}\leq b<s_{r+1}$ . We proceed by induction on $a+b$ .

If $a+b=s_{1}+1$ , then $A\subseteq [0, 1]$ and $B\subseteq [0, s_{1}]$ . Since $s_{1}-A$ , $B\subseteq [0,s_{1}]$ and

$$ \begin{align*} |A|+|B|&>3+\frac{1}{\beta}(s_{1}-2)+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &=3-\frac{3}{\beta}+s_{1}+1 >s_{1}+2, \end{align*} $$

we have $s_{1}\in A+B$ .

Now, assume that $a+b>s_{1}+1$ and that the lemma holds for the sets $A{'}\subseteq [0, a_{1}]$ and $B{'}\subseteq [0, b_{1}]$ with $a_{1}+b_{1}<a+b$ . Suppose that $(A+B)\cap S=\emptyset $ .

Case 1: $a<s_{r}$ . Write $A_{1}=s_{r}-A$ . Thus, $A_{1}\subseteq [s_{r}-a, s_{r}]\subseteq [0, b]$ . If $|A_{1}|+|B|>b+1$ , then

$$ \begin{align*} |A_{1}\cap B|=|A_{1}|+|B|-|A_{1}\cup B| \geq b+2-(b+1) =1. \end{align*} $$

Thus, $s_{r}\in A+B$ , which is impossible. Hence, $|A|+|B|=|A_{1}|+|B|\leq b+1$ , which contradicts the hypothesis (2.1).

Case 2: $a\geq s_{r}$ and $a+b>s_{r+1}$ . Write

$$ \begin{align*}A_{1}=[0, b]\cap(s_{r+1}-A), \;B_{1}=[s_{r+1}-a, b]\cap B, \end{align*} $$
$$ \begin{align*}A_{2}=[0, s_{r+1}-b-1]\cap A,\; B_{2}=[0, s_{r+1}-a-1]\cap B. \end{align*} $$

Then,

(2.2) $$ \begin{align} |B|=|B_{1}|+|B_{2}|\end{align} $$
(2.3) $$ \begin{align} |A|&=|A_{2}|+|[s_{r+1}-b, a]\cap A|\nonumber\\ &=|A_{2}|+|s_{r+1}-([s_{r+1}-b, a]\cap A)| \nonumber \\ &=|A_{2}|+|[s_{r+1}-a, b]\cap(s_{r+1}-A)|\nonumber\\ &=|A_{1}|+|A_{2}|. \end{align} $$

Since $A_{1}, B_{1}\subseteq [s_{r+1}-a,b]$ and $s_{r+1}\notin A_{1}+B_{1}$ ,

(2.4) $$ \begin{align} |A_{1}|+|B_{1}|\leq b-s_{r+1}+a+1.\end{align} $$

If $b=s_{r+1}-1$ , then $|A_{2}|=1$ and $|B_{2}|\leq s_{r+1}-a$ . By (2.2)–(2.4),

$$ \begin{align*}|A|+|B|\leq s_{r+1}-a+1+b-s_{r+1}+a+1=b+2,\end{align*} $$

which contradicts the hypothesis (2.1). Thus, $b\leq s_{r+1}-2$ .

Since $(A+B)\cap S=\emptyset $ , we have $(A_2+B_2)\cap S=\emptyset $ . Noting that

$$ \begin{align*}s_{r+1}-b-1+s_{r+1}-a-1<2(a+b)-a-b-2<a+b,\end{align*} $$

it follows from the hypothesis that if

$$ \begin{align*} \max\bigg\{s_{r+1}-b-1, s_{r+1}-a-1, \bigg(1-\frac{1}{\beta}\bigg)(2s_{r+1}-a-b-2)\bigg\}=s_{r+1}-a-1, \end{align*} $$

then

(2.5) $$ \begin{align} |A_{2}|+|B_{2}|\leq s_{r+1}-a-1+3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor. \end{align} $$

By (2.2)–(2.5),

$$ \begin{align*} |A|+|B| \leq b-s_{r+1}+a+1+s_{r+1}-a-1+3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor = b+3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor, \end{align*} $$

which contradicts (2.1). If

$$ \begin{align*} \max\bigg\{s_{r+1}-b-1, s_{r+1} -a-1, \ & \bigg(1-\frac{1}{\beta}\bigg)(2s_{r+1}-a-b-2)\bigg\} \\ & =\bigg(1-\frac{1}{\beta}\bigg)(2s_{r+1}-a-b-2), \end{align*} $$

then

(2.6) $$ \begin{align} |A_{2}|+|B_{2}|\leq\bigg(1-\frac{1}{\beta}\bigg)(2s_{r+1}-a-b-2)+3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor. \end{align} $$

By (2.2)–(2.4) and (2.6),

$$ \begin{align*} |A|+|B|&\leq b-s_{r+1}+a+1+\bigg(1-\frac{1}{\beta}\bigg)(2s_{r+1}-a-b-2)+3+\frac{2}{\beta} \bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor\\ &= s_{r+1}-\frac{2}{\beta}s_{r+1}+\frac{1}{\beta}(a+b)+\frac{2}{\beta}+2+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor\\ &\leq a+b-\frac{2}{\beta}(a+b)+\frac{1}{\beta}(a+b)+\frac{2}{\beta}+2+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor\\ &= \bigg(1-\frac{1}{\beta}\bigg)(a+b)+\frac{2}{\beta}+2+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor\\ &\leq \bigg(1-\frac{1}{\beta}\bigg)(a+b)+3+\frac{2}{\beta}\bigg\lfloor\frac{a_{1}-1}{2}\bigg\rfloor, \end{align*} $$

which again contradicts (2.1).

Case 3: $a\geq s_{r}$ and $a+b\leq s_{r+1}$ . Write

$$ \begin{align*}A_{1}=[0, s_{r}]\cap A,\; B_{1}=[0, s_{r}]\cap B,\end{align*} $$
$$ \begin{align*}A_{2}=(s_{r}, a]\cap A,\; B_{2}=(s_{r}, b]\cap B.\end{align*} $$

Since $(A+B)\cap S=\emptyset $ , it follows that $(A_{1}+B_{1})\cap S=\emptyset $ and so $|s_{r}-A_{1}|+|B_{1}|\leq s_{r}+1$ . Thus,

$$ \begin{align*} |A|+|B|&\leq a+b-2s_{r}+s_{r}+1 = a+b-s_{r}+1. \end{align*} $$

However, by (2.1),

$$ \begin{align*} |A|+|B|&> 2+\bigg(1-\frac{1}{\beta}\bigg)(a+b)\\ &= a+b-\frac{1}{\beta}(a+b)+2\\ &\geq a+b-\frac{1}{\beta}s_{r+1}+2\\ &\geq a+b-s_{r}+2, \end{align*} $$

which is a contradiction. Hence, we have $(A+B)\cap S\neq \emptyset $ .

This completes the proof of Lemma 2.2.

Remark 2.3. If $s_{1}$ is odd, this lower bound can be improved to

$$ \begin{align*} |A|+|B|>2+\frac{2}{\beta}\bigg\lfloor \frac{s_{1}-1}{2}\bigg\rfloor+\max\bigg\{a, b, \bigg(1-\frac{1}{\beta}\bigg)(a+b)\bigg\}. \end{align*} $$

3 Proof of Theorem 1.5

Let $k_{1}=\lfloor {k}/{2}\rfloor $ and $k_{2}=\lceil {k}/{2}\rceil $ . Then,

$$ \begin{align*}k_{1}A\subseteq\bigg[0, \bigg\lfloor\frac{k}{2}\bigg\rfloor l\bigg], \quad k_{2}A\subseteq\bigg[0, \bigg\lceil\frac{k}{2}\bigg\rceil l\bigg].\end{align*} $$

Since $\beta>2$ , if $k\geq {\beta }/{(\beta -2)}$ , then

$$ \begin{align*}\bigg\lceil\frac{k}{2}\bigg\rceil\leq(\beta-1)\bigg\lfloor\frac{k}{2}\bigg\rfloor.\end{align*} $$

In particular, if $\beta \geq 3$ , then

$$ \begin{align*}k\geq3\geq1+\frac{2}{\beta-2}=\frac{\beta}{\beta-2}. \end{align*} $$

Hence, if $2<\beta <3$ and $k\geq {\beta }/{(\beta -2)}$ , or $\beta \geq 3$ , then $\lceil {k}/{2}\rceil \leq (\beta -1)\lfloor {k}/{2}\rfloor $ . So,

(3.1) $$ \begin{align} \bigg\lfloor\frac{k}{2}\bigg\rfloor\leq\bigg\lceil\frac{k}{2}\bigg\rceil \leq\bigg(1-\frac{1}{\beta}\bigg)\bigg(\bigg\lceil\frac{k}{2}\bigg\rceil+\bigg\lfloor\frac{k}{2}\bigg\rfloor\bigg). \end{align} $$

Since $0\in A$ ,

$$ \begin{align*}k_{1}A+k_{2}A=\bigg(\bigg\lfloor\frac{k}{2}\bigg\rfloor+\bigg\lceil\frac{k}{2}\bigg\rceil\bigg)A=kA.\end{align*} $$

To show $kA\cap S\neq \emptyset $ , by Lemma 2.2 and (3.1), it is sufficient to show that

$$ \begin{align*}|k_{1}A|+|k_{2}A|>3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\bigg(1-\frac{1}{\beta}\bigg)kl.\end{align*} $$

By (1.2),

(3.2) $$ \begin{align} (\lambda+1)(|A|-2)>\frac{2}{\lambda\beta }\bigg(\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\frac{\beta}{2}\bigg)+\bigg(2-\frac{k}{\lambda\beta }\bigg)l-2. \end{align} $$

Noting that $\lambda \geq {k}/{\beta }$ ,

(3.3) $$ \begin{align} (\lambda+1)(|A|-2)>\bigg(2-\frac{k}{\lambda\beta}\bigg)l-2\geq l-2. \end{align} $$

Write

$$ \begin{align*}\rho=\lceil(l-1)/(|A|-2)\rceil-1.\end{align*} $$

Then by (3.3),

(3.4) $$ \begin{align} \rho<\frac{l-1}{|A|-2}\leq \lambda+1. \end{align} $$

If $\beta>2$ and $k\geq {2\beta }/{(\beta -2)}$ , then

$$ \begin{align*}k\bigg(\frac{1}{2}-\frac{1}{\beta}\bigg)\geq1>\bigg\lceil\frac{k}{\beta}\bigg\rceil-\frac{k}{\beta}\end{align*} $$

and so ${k}/{2}>\lceil {k}/{\beta }\rceil $ . If $\beta \geq 3$ and $3\leq k<2\beta $ , then $\lceil {k}/{\beta }\rceil \leq {k}/{2}$ . If $\beta \geq 3$ and $k\geq 2\beta $ , then

$$ \begin{align*}\lambda=\bigg\lceil\frac{k}{\beta}\bigg\rceil<\frac{k}{\beta}+1=\frac{k}{2}-\frac{(\beta-2)k}{2\beta}+1\leq\frac{k}{2}.\end{align*} $$

Thus, $\lambda \leq {k}/{2}$ for $\beta \geq 3$ or $2<\beta <3$ and $k\geq {2\beta }/{(\beta -2)}$ . Hence, by (3.4),

$$ \begin{align*}\rho\leq\lambda\leq\bigg\lfloor\frac{k}{2}\bigg\rfloor=k_{1}.\end{align*} $$

By Lemma 2.1,

(3.5) $$ \begin{align} |k_{i}A|\geq B_{\rho}(|A|)+(k_{i}-\rho)l \quad\mbox{for } i=1, 2. \end{align} $$

If $\lambda =\rho $ , then by (3.2) and (3.5),

$$ \begin{align*} |k_{1}A|+|k_{2}A|&\geq \lambda(\lambda+1)(|A|-2)+2\lambda+2+(k-2\lambda)l\\ &> \lambda\bigg(\frac{2}{\lambda\beta}\bigg(\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\frac{\beta}{2}\bigg)+\bigg(2-\frac{k}{\lambda\beta}\bigg)l-2\bigg) +2\lambda+2+(k-2\lambda)l\\ &= 3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\bigg(1-\frac{1}{\beta}\bigg)kl. \end{align*} $$

Now suppose that $\rho \leq \lambda -1$ . Then, $0\leq \rho \leq \lceil {k}/{\beta }\rceil -1$ . Hence, by (1.1),

$$ \begin{align*} |k_{1}A|+|k_{2}A|&\geq \rho(\rho+1)(|A|-2)+2\rho+2+(k-2\rho)l\\ &\geq \rho(l-1)+2\rho+2+(k-2\rho)l\\ &= kl-\rho(l-1)+2\\ &> kl-\bigg(\frac{k}{\beta}+\bigg\lceil\frac{k}{\beta}\bigg\rceil-\frac{k}{\beta}-1\bigg)l+2\\ &= kl-\frac{k}{\beta}l+\bigg(\frac{k}{\beta}-\bigg\lceil\frac{k}{\beta}\bigg\rceil+1\bigg)l+2\\ &\geq \bigg(1-\frac{1}{\beta}\bigg)kl+3+\frac{2}{\beta}\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor. \end{align*} $$

This completes the proof of Theorem 1.5.

4 Proof of Theorem 1.4

Let $\beta ^{-}$ be some constant satisfying $\alpha <\beta ^{-}<\beta $ , and assume that

(4.1) $$ \begin{align} \frac{s_{n+1}}{s_{n}}\leq \beta^{-} \quad\mbox{for all } n\geq1. \end{align} $$

Then for any l so large that

$$ \begin{align*} \frac{1}{\lambda+1}\bigg(2-\frac{k}{\lambda\beta}\bigg)l \geq \frac{1}{\lambda+1}\bigg(\bigg(2-\frac{k}{\lambda\beta^{-}}\bigg)l+2\lambda\bigg) +\frac{2}{\lambda(\lambda+1)\beta^{-}} \bigg(\bigg\lfloor\frac{s_{1}-1}{2}\bigg\rfloor+\frac{\beta^{-}}{2}\bigg), \end{align*} $$

we see that Theorem 1.5, using the constant $\beta ^{-}$ , gives the conclusion of Theorem 1.4. If (4.1) does not hold for all $n\geq 1$ , then as ${s_{n+1}}/{s_{n}}\leq \beta ^{-} $ for sufficiently large n, a simple relabelling of the terms of the sequence, omitting finitely many terms at the beginning, would suffice.

This completes the proof of Theorem 1.4.

Acknowledgment

The authors would like to thank the referee for helpful comments and valuable suggestions.

Footnotes

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11071033, 12371003) and the Top Talents Project of Anhui Department of Education (Grant No. gxbjZD05).

References

Abe, T., ‘Sumsets containing powers of an integer’, Combinatorica 24 (2004), 14.CrossRefGoogle Scholar
Erdős, P. and Freiman, G., ‘On two additive problems’, J. Number Theory 34 (1990), 112.CrossRefGoogle Scholar
Kapoor, V., ‘Set whose sumset avoids a thin sequence’, J. Number Theory 130 (2010), 534538.CrossRefGoogle Scholar
Lev, V. F., ‘Representing powers of 2 by a sum of four integers’, Combinatorica 16 (1996), 413416.CrossRefGoogle Scholar
Lev, V. F., ‘Structure theorem for multiple addition and the Frobenius problem’, J. Number Theory 58 (1996), 79–78.CrossRefGoogle Scholar
Nathanson, M. B. and Sárközy, A., ‘Sumsets containing long arithmetic progressions and powers of 2’, Acta Arith. 54 (1989), 147154.CrossRefGoogle Scholar
Pan, H., ‘Note on integer powers in sumsets’, J. Number Theory 117 (2006), 216221.CrossRefGoogle Scholar
Wu, X. and Chen, Y. Q., ‘Note on powers of 2 in sumsets’, Appl. Math. Lett. 25 (2012), 932936.CrossRefGoogle Scholar