Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T17:32:18.186Z Has data issue: false hasContentIssue false

The subnormal structure of metanilpotent groups

Published online by Cambridge University Press:  17 April 2009

D.J. McCaughan
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
D. McDougall
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a group with a normal nilpotent subgroup N such that G/N is periodic and nilpotent. If G(p)/N is the Sylow p-subgroup of G/N and Q(p) is the maximal p-radicable subgroup of N, it is shown that G has a bound on the subnormal indices of its subnormal subgroups if and only if there is a positive integer c such that G(p)/Q(p) is nilpotent of class at most c, for all primes p. It is also shown that if G is a periodic metanilpotent group and Q is its maximal radicable abelian normal subgroup then G has a bound on its subnormal indices if and only if there is a positive integer c such that for all primes p the Sylow p-subgroups of G/Q are nilpotent of class at most c.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Baer, Reinhold, “Irreducible groups of automorphisms of abelian groups”, Pacific J. Math. 14 (1961), 385406.CrossRefGoogle Scholar
[2]Best, Ernest and Taussky, Olga, “A class of groups”, Proc. Irish Acad. Sect. A 47 (1942), 5562.Google Scholar
[3]Чepников, C.H. [S.N. Černikov], “Полньые грУппы, обладающие возрастающим централым рядом” [Complete groups with an ascending central series], Rec. Math. [Mat. Sb.] N.S. 18 (60) (1946), 397–422. English Summary: S. Tchernikoff, “Complete groups possessing ascending central series”.Google Scholar
[4] Чepников [S.N. Černikov], “Условия конечности в общей теории групп” [Finiteness conditions in group theory], Uspehi Mat. Nauk 14 (1959), no. 5 (89), 4596. Germantranslation: S.N. Tschernikow, “Endlichkeitsbedingungen in der Gruppentheorie”, (VEB Deutscher Verlag der Wissenschaften, Berlin,. 1903).Google Scholar
[5]Dixon, John D., “Complements of normal subgroups in infinite groups”, Proc. London Math. Soc. (3) 17 (1963), 431446.Google Scholar
[6]Gaschütz, Wolfgang, “Gruppen, in denen das Normalteilersein transitivist”, J. reine angew. Math. 198 (1957), 8792.CrossRefGoogle Scholar
[7]Hardy, G.H. and Wright, E.M., An introduction to the theory of numbers, 4th edition (Clarendon Press, Oxford, 1960).Google Scholar
[8]Heineken, H. and Mohamed, I.J., “A group with trivial centre satisfying the normalizer condition”, J. Algebra 10 (1968), 368376.CrossRefGoogle Scholar
[9]Liebeck, Hans, “Concerning nilpotent wreath products”, Proc. Cambridge Philos. Soc. 58 (1962), 443451.CrossRefGoogle Scholar
[10]McDougall, David, “Soluble groups with the minimum condition for normal subgroups”, Math. Z. 118 (1970), 157167.CrossRefGoogle Scholar
[11]McDougall, D., “The subnormal structure of some classes of soluble groups”, J. Austral. Math. Soc. (to appear).Google Scholar
[12]Robinson, Derek J.S., “Groups in which normality is a transitive relation”, Proc. Cambridge Philos. Soc. 60 (1964), 2138.CrossRefGoogle Scholar
[13]Robinson, Derek S., “Joins of subnormal subgroups”, Illinois J. Math. 9 (1965), 144–168.CrossRefGoogle Scholar
[14]Robinson, Derek S., “On finitely generated soluble groups”, Proc. London Math. Soc. (3) 15 (1965), 508516.CrossRefGoogle Scholar
[15]Robinson, Derek S., “On the theory of subnormal subgroups”, Math. Z. 89 (1965), 3051.CrossRefGoogle Scholar
[16]Robinson, Derek J.S., “Wreath products and indices of subnormality”, Proc. London Math. Soc. (3) 17 (1967), 257270.CrossRefGoogle Scholar
[17]Robinson, Derek J.S., “A property of the lower central series of a group”, Math. Z. 107 (1968), 225231.CrossRefGoogle Scholar
[18]Robinson, Derek J.S., Infinite soluble and nilpotent groups (Queen Mary College Mathematics Notes, London, N.D. [1968]).Google Scholar
[19]Roseblade, J.E., “Groups in which every subgroup is subnormal”, J. Algebra 2 (1965), 402412.CrossRefGoogle Scholar
[20]Zacher, Giovanni, “Caratterizzazione dei t-gruppi finiti risolubili”, Ricerche Mat. 1 (1952), 287294.Google Scholar