Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:20:33.525Z Has data issue: false hasContentIssue false

Subdifferential Rolle's and mean value inequality theorems

Published online by Cambridge University Press:  17 April 2009

D. Azagra
Affiliation:
Dpto. de Análisis MatemáticoFacultad de MatemáticasUniversidad Complutense de Madrid28040 MadridSpain e-mail: [email protected]
R. Deville
Affiliation:
Département de Mathématiques Pures et AppliquéesUniversitá: Bordeaux I351, cours de la Libération33405 Talence CedexFrance e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we give a subdifferential mean value inequality for every continuous Gâteaux subdiferentiable function f in a Banach space which only requires a bound for one but not necessarily all of the subgradients of f at every point of its domain. We also give a subdifferential approximate Rolle's theorem satating that if a subdifferentiable function oscilllates between −ɛ and ɛ on the boundary of the unit ball then there exists a subgradient of the function at an interior point of the ball which has norm less than or equal to 2ɛ.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Aussel, D., Corvellec, J.-N. and Lassonde, M., ‘Mean value property and subdifferential criteria for lower semicontinuous functions’, Trans. Amer. Math. Soc. 347 (1995), 41474161.CrossRefGoogle Scholar
[2]Azagra, D., Gómez, J. and Jaramillo, J.A., ‘Rolle's Theorem and negligibility of points in infinite dimensional Banach spaces’, J. Math. Anal. Appl. (to appear).Google Scholar
[3]Cohn, D.L., Measure theory (Birkhäuser, Boston, 1980).CrossRefGoogle Scholar
[4]Deville, R., ‘A mean value theorem for the non differentiable mappings’, Serdica 21 (1995), 5966.Google Scholar
[5]Deville, R., Godefroy, G. and Zizler, V., Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (Longman Science and Technology, Harlow, 1993).Google Scholar
[6]Haddad, E.M. El, Calcul sous-differentiel et solutions de viscosité des équations de Hamilton-Jacobi (Thése doctorale présentèe à I'Université Bordeaux I, 1994).Google Scholar
[7]Phelps, R.R., Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).CrossRefGoogle Scholar
[8]Shkarin, S.A., ‘On Rolle's theorem in infinite-dimensional Banach spaces’, Trans. Matematicheskie Zametki 51 (1992), 128136.Google Scholar