No CrossRef data available.
Published online by Cambridge University Press: 08 November 2022
For a continuous and positive function
$w(\lambda )$
,
$\lambda>0$
and
$\mu $
a positive measure on
$(0,\infty )$
, we consider the integral transform
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other things that if B,
$A>0,$
then
$\mathcal {D}( w,\mu ) $
is operator subadditive on
$(0,\infty ) $
, that is,
From this, we derive that if $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator monotone function on $[0,\infty )$ , then the function $[ f( t) -f( 0) ] t^{-1}$ is operator subadditive on $( 0,\infty ) .$ Also, if $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator convex function on $[0,\infty )$ , then the function $[ f( t) -f( 0) -f_{+}^{\prime }( 0) t ] t^{-2}$ is operator subadditive on $( 0,\infty ) .$