Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T23:08:13.766Z Has data issue: false hasContentIssue false

Structure des cones normaux contenus dans un espace de Banach ou son dual II

Published online by Cambridge University Press:  17 April 2009

Richard Becker
Affiliation:
Equipe D'Analyse Unité associée au C.N.R.S. No 754 Tour 46, 4ièmie étage, Universite Paris VI, 4 Place Jussieu 75252 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let B be a Banach space and XB a normal cone such that the norm is monotone on X for the order determinated by X.

We study the sup, denoted by i(X), of the q ≥ 1 such that, for each E> 0 and each n, there are x1, …, xn in X such that:

for all a1, …, an ≥ 0, where ‖ ‖q is the norm in lq.

We prove that i(X) is the inf of the p for which we have:

The proof use a similar theorem of Kirvine, concerning Banach Riesz spaces. Here conical measures are a useful tool. We establish a link with a preceding work in which we adapt the Maurey theory factorisation of operators with values in a LP space, to the case of normal cones, contained in a Banach space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Becker, R., ‘Structure des cones normaux contenus dans un espace de Banach ou son dual’, C.R. Acad. Sci. Paris Sér I Math t. 314 (1992), 535539.Google Scholar
[2]Becker, R., ‘Cones contenus dans un espace de Banach et factorisation d'opérateurs ≥ 0, définis sur le dual, à valeurs dans un espace L 1’, (Soumis).Google Scholar
[3]Choquet, G., Lectures on analysis 1–3, Mathematics, Lecture Notes Series (Benjamin, New York, Amsterdam, 1969).Google Scholar
[4]Fakhoury, H., ‘Structures uniformes faibles sur une classe de cones et d'ensembles convexes’, Pacific J. Math. 39 (1971), 641654.CrossRefGoogle Scholar
[5]Krivine, J.L., ‘Théorèmes de factorisation dans les espaces réticulés’, Séminaire Maurey-Schwartz exposés XXII et XXIII 19731974, Ecole Polytechnique Paris.Google Scholar
[6]Krivine, J.L., ‘Sous-espaces de dimension finie des espaces de Banach réticulés’, Ann. of Math. 104 (1976), 129.CrossRefGoogle Scholar
[7]Schaeffer, H.H., Topological vector spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar