Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T18:37:51.115Z Has data issue: false hasContentIssue false

Strong barrelledness properties in B(Σ, X)

Published online by Cambridge University Press:  17 April 2009

J.C. Ferrando
Affiliation:
Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain, e-mail: [email protected]@upvnet.upv.es
L. M. Sánchez Ruiz
Affiliation:
Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain, e-mail: [email protected]@upvnet.upv.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that given a σ-algebra Σ of subsets of a set Ω and a normed space X, then the normed space B(Σ, X), endowed with the usual supremum-norm, of the X-valued functions defined on Ω that are the uniform limit of a sequence of σ-simple X-valued functions on Ω is barrelled of class s if and only if X is barrelled of class s. This extends in the normed case the well known result obtained by Mendoza (1982) for barrelled spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Ferrando, J.C., ‘On the barrelledness of the vector-valued bounded function space’, J. Math. Anal. Appl. 184 (1994), 437440.CrossRefGoogle Scholar
[2]Ferrando, J.C. and Pellicer, M. López, ‘Barrelled spaces of class n and of class ℵ0’, Anal. Sem. Mat. Fund. UNED Fasc. 4 (1992), 114.Google Scholar
[3]Ferrando, J.C. and Ruiz, L.M. Sánchez, ‘Strong barrelledness properties in L X)’, Math. Scand. 73 (1994), 4148.CrossRefGoogle Scholar
[4]Freniche, J., ‘Barrelledness of the space of vector valued and simple functions’, Math. Ann. 267 (1984), 479486.CrossRefGoogle Scholar
[5]Marquina, A. and Serna, J.M. Sanz, ‘Barrelledness conditions on C 0(E’) Arch. Math. 31 (1978), 589596.CrossRefGoogle Scholar
[6]Mendoza, J., ‘Barrelledness conditions on S(Σ, E) and B(Σ,E)Math. Ann. 261 (1982), 1122.CrossRefGoogle Scholar
[7]Carreras, P. Pérez and Bonet, J., ‘Remarks and examples concerning suprabarrelled and totally barrelled spaces’, Arch. Math. 39 (1982), 340347.CrossRefGoogle Scholar
[8]Pietsch, A., Nuclear locally convex spaces (Springer, Berlin, Heidelberg, New York, 1972).Google Scholar
[9]Saxon, S.A., ‘Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology’, Math. Ann. 197 (1972), 87106.CrossRefGoogle Scholar
[10]Saxon, S.A. and Narayanaswami, P.P., ‘Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem’, Bull. Austral. Math. Soc. 23 (1981), 6580.CrossRefGoogle Scholar
[11]Valdivia, M., ‘On suprabarrelled spaces’, in Functional analysis holomorphy and approximation theory, (Machado, Silvio, Editor), Lecture Notes in Math. 843 (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 572580.CrossRefGoogle Scholar
[12]Valdivia, M. and Carreras, P. Pérez, ‘On totally barrelled spaces’, Math. Z. 178 (1981), 263269.CrossRefGoogle Scholar