Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T08:00:23.827Z Has data issue: false hasContentIssue false

The strict topology on spaces of bounded holomorphic functions

Published online by Cambridge University Press:  17 April 2009

Juan Ferrera
Affiliation:
Departamento de Analisis MatematicoUniversidad Complutense de Madrid28040 MadridSpain
Angeles Prieto
Affiliation:
Departamento de Analisis MatematicoUniversidad Complutense de Madrid28040 MadridSpain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce in this paper the space of bounded holomorphic functions on the open unit ball of a Banach space endowed with the strict topology. Some good properties of this topology are obtained. As applications, we prove some results on approximation by polynomials and a description of the continuous homomorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Alencar, R., ‘On the reflexivity and basis for P(mE)’, Proc. Roy. Irish Acad, 85 A (1985), 131138.Google Scholar
[2]Alencar, R., Aron, R. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407411.CrossRefGoogle Scholar
[3]Aron, R., ‘Compact polynomials and compact differentiable mappings between Banach spaces’, in Sém. Pierre Lelong, Lecture Notes in Maths 529 (Springer-Verlag, Heidelberg, Berlin, New York, 1976), pp. 213222.Google Scholar
[4]Aron, R. and Berner, P., ‘A Hahn-Banach extension theorem for analytic mappings’, Bull. Soc. Math. France 106 (1978), 324.CrossRefGoogle Scholar
[5]Bochnak, J. and Siciak, J., ‘Polynomials and multilinear mappings’, in Algebraic properties of classes of analytic functions Sem. Analytic Functions II, (R.C. Buck, Editor), 1957, pp. 175188.Google Scholar
[6]Buck, R.C., ‘Bounded continuous functions on locally compact spaces’, Michigan Math. J. 5 (1958), 95104.CrossRefGoogle Scholar
[7]Chae, S.B., Holomorphy and calculus in Banach spaces (Marcel Dekker, New York, 1985).Google Scholar
[8]Cooper, J.B., ‘The strict topology and spaces with mixed topology’, Proc. Amer. Math. Soc. 30 (1971), 583592.CrossRefGoogle Scholar
[9]Davie, A. and Gamelin, T., ‘A theorem on polynomial-star topology’, Proc. Amer. Math. Soc. 106 (1989), 351356.CrossRefGoogle Scholar
[10]Dunford, N., ‘Uniformity in linear spaces’, Trans. Amer. Math. Soc. 44 (1938), 305356.CrossRefGoogle Scholar
[11]Garnett, J., Bounded analytic functions (Academic Press, New York, 1981).Google Scholar
[12]Isidro, J., ‘Topological duality on the functional space (Hb(U;F), τb)’, Proc. Roy. Irish Acad. 79A (1979), 115130.Google Scholar
[13]Köthe, G., Topological vector spaces, Grundlehren Math. Wiss. 159 (Springer-Verlag, Berlin, Heidelberg, New York, 1969).Google Scholar
[14]Landau, E., ‘Abschätzung der Koeffzientensumme einer Potenzreihe’, Arch. Math. Phys. 21 (1913), 4250.Google Scholar
[15]Prieto, A., La topología estricta en espacios de funciones holomorfas, Thesis (Universidad Complutense de Madrid, 1989).Google Scholar
[16]Prieto, A., ‘Strict and mixed topologies on function spaces’, Math. Nachr. 155 (1992), 289293.CrossRefGoogle Scholar
[17]Prieto, A., ‘Sur le lemme de Schwarz en dimension infinite’, C.R. Acad. Sci. Paris Ser. I 314 (1992), 741742.Google Scholar
[18]Rubel, L. and Shields, A., ‘The space of bounded analytic functions on a region’, Ann. Inst. Fourier (Grenoble) 16 (1966), 235277.CrossRefGoogle Scholar
[19]Tsirelson, B., ‘Not every Banach space contains an imbedding of lp or co’, Funct. Anal. Appl. 8 (1974), 138141.CrossRefGoogle Scholar