Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T07:43:04.689Z Has data issue: false hasContentIssue false

Stable algorithms for solving symmetric and skew-symmetric systems*

Published online by Cambridge University Press:  17 April 2009

James R. Bunch
Affiliation:
Department of Mathematics, University of California, San Diego, La Jolla, California 92093, USA.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Australian Mathematical Society Applied Mathematics Conference
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Aasen, Jan Ole, “On the reduction of a symmetric matrix to tridiagonal form”, BIT 11 (1971), 233242.CrossRefGoogle Scholar
[2]Bunch, J.R., “Analysis of the diagonal pivoting method”, SIAM J. Numer. Anal. 8 (1971), 656680.CrossRefGoogle Scholar
[3]Bunch, James R., “Partial pivoting strategies for symmetric matrices”, SIAM J. Numer. Anal. 11 (1974), 521528.CrossRefGoogle Scholar
[4]Bunch, James R., “Stable decomposition of skew-symmetric matrices”, Math. Comp. (to appear).Google Scholar
[5]Bunch, James R. and Kaufman, Linda, “Stome stable methods for calculating inertia and solving symmetric linear systems”, Math. Comp. 31 (1977), 163179.CrossRefGoogle Scholar
[6]Bunch, James R., Kaufman, Linda and Parlett, Beresford N., ”Decomposition of a symmetric matrix”, Numer. Math. 27 (1976), 95109.CrossRefGoogle Scholar
[7]Bunch, J.R. and Parlett, B.N., “Direct methods for solving symmetric indefinite systems of linear equations”, SIAM J. Numer. Anal. 8 (1971), 639655.CrossRefGoogle Scholar
[8]Dongarra, J.J., Bunch, J.R., Moler, C.B. and Stewart, G.W., LINPACK users' guide (Society for Industrial and Applied Mathematics, Philadelphia, 1979).CrossRefGoogle Scholar
[9]Mirsky, L., An introduction to linear algebra (Clarendon, Oxford, 1955).Google Scholar
[10]Parlett, B.N. and Reid, J.K., “On the solution of a system of linear equations whose matrix is symmetric but not definite”, BIT 10 (1970), 386397.Google Scholar
[11]Wilkinson, J.H., The algebraic eigenvalue problem (Clarendon, Oxford, 1965).Google Scholar