Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T06:16:21.195Z Has data issue: false hasContentIssue false

SOME REMARKS ON THE PIGOLA–RIGOLI–SETTI VERSION OF THE OMORI–YAU MAXIMUM PRINCIPLE

Published online by Cambridge University Press:  19 August 2013

ALEXANDRE PAIVA BARRETO*
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, Brazil
FRANCISCO FONTENELE
Affiliation:
Departamento de Geometria, Universidade Federal Fluminense, Niterói, RJ, Brazil email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a ${C}^{2} $ proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau principle, formulated in terms of lower bounds for curvature.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Alias, L., Bessa, G. P. and Dajczer, M., ‘The mean curvature of cylindrically bounded submanifolds’, Math. Ann. 345 (2009), 367376.CrossRefGoogle Scholar
Alias, L., Bessa, G. P. and Montenegro, J. F., ‘An estimate for the sectional curvature of cylindrically bounded submanifolds’, Trans. Amer. Math. Soc. 364 (2012), 35133528.Google Scholar
Baek, J. O., Cheng, Q.-M. and Suh, Y. J., ‘Complete space-like hypersurfaces in locally symmetric Lorentz spaces’, J. Geom. Phys. 49 (2004), 231247.CrossRefGoogle Scholar
Borbély, A., ‘On minimal surfaces satisfying the Omori–Yau principle’, Bull. Aust. Math. Soc. 84 (2011), 3339.CrossRefGoogle Scholar
Cheng, Q.-M., ‘Curvatures of complete hypersurfaces in space forms’, Proc. Roy. Soc. Edinburgh 134 (2004), 5568.CrossRefGoogle Scholar
Cheng, S. Y. and Yau, S. T., ‘Differential equations on Riemannian manifolds and their geometric applications’, Comm. Pure Appl. Math. 28 (1975), 333354.Google Scholar
Fontenele, F. and Xavier, F., ‘Good shadows, dynamics and convex hulls of complete submanifolds’, Asian J. Math. 15 (2011), 932.Google Scholar
Jorge, L. and Koutroufiotis, D., ‘An estimate for the curvature of bounded submanifolds’, Amer. J. Math. 103 (1981), 711725.CrossRefGoogle Scholar
Omori, H., ‘Isometric immersions of Riemannians manifolds’, J. Math. Soc. Japan 19 (1967), 205214.CrossRefGoogle Scholar
Pigola, S., Rigoli, M. and Setti, G., ‘Maximum principles on Riemannian manifolds and applications’, Mem. Amer. Math. Soc. 174 (822) (2005).Google Scholar
Schoen, R. and Yau, S. T., ‘Lectures on differential geometry’, in: Conference Proceedings and Lecture Notes in Geometry and Topology, Vol. 1 (International Press, Cambridge, MA, 1994).Google Scholar
Yau, S. T., ‘Remarks on conformal transformations’, J. Differential Geom. 8 (1973), 369381.CrossRefGoogle Scholar
Yau, S. T., ‘Harmonic functions on complete Riemannian manifolds’, Comm. Pure Appl. Math. 28 (1975), 201228.Google Scholar
Yau, S. T., ‘A general Schwarz lemma for Kähler manifolds’, Amer. J. Math. 100 (1978), 197203.Google Scholar