Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T13:45:29.911Z Has data issue: false hasContentIssue false

Some remarks on symmetry for a monoidal category

Published online by Cambridge University Press:  17 April 2009

Stefano Kasangian
Affiliation:
Istituto Matematico dell'Università, via C. Saldini, 50, 20133 Milano, Italy
Fabio Rossi
Affiliation:
Istituto Matematico dell'Università, Piazzale Europa, I, 34100 Trieste, Italy.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that, for a monoidal category V, not every commutation is a symmetry and also that a commutation does not suffice to define the tensor product AB of V-categorles A and B. Moreover, it is shown that every symmetry can be transported along a monoidal equivalence.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Bénabou, Jean, “Algébre élémentaire dans les catégories avec multiplication”, C.R. Acad. Sci. Paris 258 (1964), 771774.Google Scholar
[2]Eilenberg, Samuel and Kelly, G. Max, “Closed categories”, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, 421562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).CrossRefGoogle Scholar
[3]Kelly, G.M., “On MacLane's conditions for coherence of natural associativities, commutativities, etc”, J. Algebra 1 (1964), 397402.CrossRefGoogle Scholar
[4]Kelly, G.M., “Doctrinal adjunction”, Category Seminar, 257280 (Proc. Sydney Category Theory Seminar 1972/1973. Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[5]Lane, S. Mac, “Natural associativity and commutativity”, Rice Univ. Studies 49 (1963), no. 4, 2846.Google Scholar