Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T14:01:23.993Z Has data issue: false hasContentIssue false

Some neutral equations with a control parameter

Published online by Cambridge University Press:  17 April 2009

Vasil G. Angelov
Affiliation:
Academy of Medicine, Sofia, 1184, P.C. 37, Bulgaria.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents sufficient conditions, involving accretive operators, for the existence, uniqueness and continuous dependence on a control parameter of the solutions of some initial and boundary value problems for neutral functional differential equations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1] В.Г. Ангелов, Д.Д. Байнов [Angelov, V.G., Bainov, D.D.], “Существование и единственносиь г лобального решенкя нвкоторых интегральнофункцио-нальных уравнений в пространстве L p” [Existence and uniqueness of the global solution of certain integral-functional equations in a space], An. Ştiinţ. Univ. “Al. I. Cuza” Iasi Secţ. I a Mat. (N.S.) 26 (1980), 7783.Google Scholar
[2] Х. Бенсаад, С.Б. Норкин [Bensaad, Kh., Norkin, S.B.], “Краевая задача с управлением в начальной функции для нелинейных систем дифференциальных уравненсй с запаздывающим аргументом” Ukraïn. Mat. Ž. 26 (1974), 312.Google Scholar
[3] Г.А. Каменский [Kamenskiĭ, G.A.], “Вариационные и краевые задачи с отклоняющимся аргументом” [Variational and boundary value problems with deviating argument], Differential Equations 6 (1970), 13491358.Google Scholar
[4] М.М. Константинов, Д.Д. Байнов [Konstantinov, M.M., Bainov, D.D.], On one boundary value problem for a differential equation with the deviating agrument and parameter], Ukraïn. Mat. Ž. 27 (1975), 798803.Google Scholar
[5]Martin, R.H. Jr., “A global existence theorem for autonomous differential equations in Banach spaces”, Proc. Amer. Math. Soc. 26 (1970), 307314.CrossRefGoogle Scholar
[6]Webb, G.F., “Accretive operators and existence for nonlinear functional differential equations”, J. Differential Equations 14 (1973), 5769.CrossRefGoogle Scholar
[7] [Zverkin, A.M.], [Definition of the concept of solution for equations with deviating argument of neutral type], Trudy Sem. Teor. Differencial. Uravneciǐ s Otklon. Argumentom Univ. Družby Narodov Patrisa Lumumby 4 (1967), 278283.Google Scholar