Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T14:33:01.000Z Has data issue: false hasContentIssue false

SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS

Published online by Cambridge University Press:  26 September 2016

MOHSEN SHAH HOSSEINI
Affiliation:
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran email [email protected]
MOHSEN ERFANIAN OMIDVAR*
Affiliation:
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Berger, C., ‘A strange dilatation theorem’, Notices Amer. Math. Soc. 12 (1965), 590.Google Scholar
Buzano, M. L., ‘Generalizzazione della diseguaglianza di Cauchy–Schwarz’, Rend. Semin. Mat. Univ. Politec. Torino 31(1971–1973) (1974), 405409 (in Italian).Google Scholar
Dragomir, S. S., ‘Reverse inequalities for the numerical radius of linear operators in Hilbert space’, Bull. Aust. Math. Soc. 73 (2006), 255262.Google Scholar
Dragomir, S. S. and Sandor, J., ‘Some inequalities in perhilbertian space’, Stud. Univ. Babeş-Bolyai Math. 32(1) (1987), 7178.Google Scholar
Gustafson, K. E. and Rao, D. K. M., Numerical Range (Springer, New York, 1997).Google Scholar
Holbrook, J. A. R., ‘Multiplicative properties of the numerical radius in operator theory’, J. reine angew. Math. 237 (1969), 166174.Google Scholar
Mitrinovic, D. S., Pecaric, J. E. and Fink, A. M., Classical and New Inequalities in Analysis (Kluwer Academic, Dordrecht, 1993).Google Scholar