Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T19:47:47.721Z Has data issue: false hasContentIssue false

SOME EXAMPLES IN VECTOR INTEGRATION

Published online by Cambridge University Press:  29 June 2009

JOSÉ RODRÍGUEZ*
Affiliation:
Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some classical examples in vector integration due to Phillips, Hagler and Talagrand are revisited from the point of view of the Birkhoff and McShane integrals.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

Footnotes

Research partially supported by MEC and FEDER (project MTM2005-08379) and Generalitat Valenciana (project GVPRE/2008/312).

References

[1]Balcerzak, M. and Potyrała, M., ‘Convergence theorems for the Birkhoff integral’, Czech. Math. J. 58(4) (2008), 12071219.Google Scholar
[2]Bourgain, J., Fremlin, D. H. and Talagrand, M., ‘Pointwise compact sets of Baire-measurable functions’, Amer. J. Math. 100(4) (1978), 845886.CrossRefGoogle Scholar
[3]Cascales, B. and Rodríguez, J., ‘The Birkhoff integral and the property of Bourgain’, Math. Ann. 331(2) (2005), 259279.Google Scholar
[4]Deville, R. and Rodríguez, J., Integration in Hilbert generated Banach spaces, Israel J. Math. to appear.Google Scholar
[5]Di Piazza, L. and Preiss, D., ‘When do McShane and Pettis integrals coincide?’, Illinois J. Math. 47(4) (2003), 11771187.Google Scholar
[6]Diestel, J. and Uhl, J. J. Jr., Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977), with a foreword by B. J. Pettis.CrossRefGoogle Scholar
[7]Edgar, G. A., ‘Measurability in a Banach space’, Indiana Univ. Math. J. 26(4) (1977), 663677.Google Scholar
[8]Fremlin, D. H., ‘The generalized McShane integral’, Illinois J. Math. 39(1) (1995), 3967.CrossRefGoogle Scholar
[9]Fremlin, D. H., The McShane and Birkhoff integrals of vector-valued functions, Research Report 92–10, Mathematics Department, University of Essex, 1992.Google Scholar
[10]Fremlin, D. H. and Mendoza, J., ‘On the integration of vector-valued functions’, Illinois J. Math. 38(1) (1994), 127147.Google Scholar
[11]Jech, T., Set Theory, Springer Monographs in Mathematics (Springer, Berlin, 2003), the third millennium edition, revised and expanded.Google Scholar
[12]Johnson, W. B. and Lindenstrauss, J., ‘Some remarks on weakly compactly generated Banach spaces’, Israel J. Math. 17 (1974), 219230.Google Scholar
[13]Musiał, K., ‘Topics in the theory of Pettis integration’, Rend. Istit. Mat. Univ. Trieste 23(1) (1991), 177262. School on Measure Theory and Real Analysis (Grado, 1991) (1993).Google Scholar
[14]Pettis, B. J., ‘On integration in vector spaces’, Trans. Amer. Math. Soc. 44(2) (1938), 277304.CrossRefGoogle Scholar
[15]Phillips, R. S., ‘Integration in a convex linear topological space’, Trans. Amer. Math. Soc. 47 (1940), 114145.CrossRefGoogle Scholar
[16]Riddle, L. H. and Saab, E., ‘On functions that are universally Pettis integrable’, Illinois J. Math. 29(3) (1985), 509531.Google Scholar
[17]Rodríguez, J., ‘On the existence of Pettis integrable functions which are not Birkhoff integrable’, Proc. Amer. Math. Soc. 133(4) (2005), 11571163.Google Scholar
[18]Rodríguez, J., ‘Universal Birkhoff integrability in dual Banach spaces’, Quaest. Math. 28(4) (2005), 525536.Google Scholar
[19]Rodríguez, J., ‘The Bourgain property and convex hulls’, Math. Nachr. 280(11) (2007), 13021309.CrossRefGoogle Scholar
[20]Rodríguez, J., ‘On the equivalence of McShane and Pettis integrability in non-separable Banach spaces’, J. Math. Anal. Appl. 341(1) (2008), 8090.Google Scholar
[21]Rodríguez, J., ‘Weak Baire measurability of the balls in a Banach space’, Studia Math. 185(2) (2008), 169176.Google Scholar
[22]Rodríguez, J., ‘Pointwise limits of Birkhoff integrable functions’, Proc. Amer. Math. Soc. 137(1) (2009), 235245.Google Scholar
[23]Rodríguez, J., Convergence theorems for the Birkhoff integral, Houston J. Math. to appear.Google Scholar
[24]Talagrand, M., ‘Pettis integral and measure theory’, Mem. Amer. Math. Soc. 51(307) (1984), ix+224.Google Scholar
[25]Zizler, V., Nonseparable Banach Spaces, Handbook of the Geometry of Banach Spaces, 2 (North-Holland, Amsterdam, 2003), pp. 17431816.Google Scholar