Published online by Cambridge University Press: 17 April 2009
For a given nonlinear partial differential equation defined on a bounded domain with irregular boundary, the available analytical tools are very limited in relation to the study of positive solutions. In this paper wer first use weak convergence methods to show that for an elliptic equation of a certain type, classical positive solutions on nearby smooth domains approach a generalised positive solution on the given domain. The idea is then applied to sublinear elliptic problems to obtain existence and uniqueness results.