Published online by Cambridge University Press: 17 April 2009
Constructed are strictly increasing smooth families Σt ⊆ ∂D × C2, t ∈ [0, 1], of fibrations over the unit circle with strongly pseudoconvex fibers all diffeomorphic to the ball such that there is no analytic selection of the polynomial hull of Σ0 and which end at the product fibration . In particular these examples show that the continuity method for describing the polynomial hull of a fibration over ∂D fails even if the complex geometry of the fibers is relatively simple.