Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T14:06:52.984Z Has data issue: false hasContentIssue false

THE SHORT RESOLUTION OF A SEMIGROUP ALGEBRA

Published online by Cambridge University Press:  29 August 2017

I. OJEDA
Affiliation:
Departamento de Matemáticas, Universidad de Extremadura, E-06071 Badajoz, España email [email protected]
A. VIGNERON-TENORIO*
Affiliation:
Departamento de Matemáticas, Universidad de Cádiz, E-11405 Jerez de la Frontera (Cádiz), España email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work generalises the short resolution given by Pisón Casares [‘The short resolution of a lattice ideal’, Proc. Amer. Math. Soc.131(4) (2003), 1081–1091] to any affine semigroup. We give a characterisation of Apéry sets which provides a simple way to compute Apéry sets of affine semigroups and Frobenius numbers of numerical semigroups. We also exhibit a new characterisation of the Cohen–Macaulay property for simplicial affine semigroups.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

Footnotes

Both authors are partially supported by the projects MTM2012-36917-C03-01 and MTM2015-65764-C3-1-P (MINECO/FEDER, UE), National Plan I+D+I. The first author is also partially supported by Junta de Extremadura (FEDER funds) and the second by Junta de Andalucía (group FQM-366).

References

Briales, E., Campillo, A., Marijuán, C. and Pisón, P., ‘Minimal systems of generators for ideals of semigroups’, J. Pure Appl. Algebra 124 (1998), 730.CrossRefGoogle Scholar
Briales, E., Campillo, A., Pisón, P. and Vigneron, A., ‘Simplicial complexes and syzygies of lattice ideals’, in: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering (South Hadley, MA, 2000), Contemporary Mathematics, 286 (American Mathematical Society, Providence, RI, 2001), 169183.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39 (Cambridge University Press, New York, 1993).Google Scholar
Campillo, A. and Gimenez, P., ‘Syzygies of affine toric varieties’, J. Algebra 225 (2000), 142161.Google Scholar
Cortadellas Benítez, T., Jafari, R. and Zarzuela Armengou, S., ‘On the Apéry sets of monomial curves’, Semigroup Forum 86(2) (2013), 289320.Google Scholar
Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., ‘Singular 4-0-2—A computer algebra system for polynomial computations’, 2015, http://www.singular.uni-kl.de.Google Scholar
Einstein, D., Lichtblau, D., Strzebonski, A. and Wagon, S., ‘Frobenius numbers by lattice point enumeration’, Integers 7 (2007), A15, 63 pages.Google Scholar
García-Sánchez, P. A. and Rosales, J. C., Finitely Generated Commutative Monoids (Nova Science, Commack, NY, 1999).Google Scholar
Marquez-Campos, G., Ojeda, I. and Tornero, J. M., ‘On the computation of the Apéry set of numerical monoids and affine semigroups’, Semigroup Forum 91(1) (2015), 139158.CrossRefGoogle Scholar
Miller, E. and Sturmfels, B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics, 227 (Springer, New York, 2005).Google Scholar
Morales, M. and Dung, N. T., ‘Gröbner basis, a “pseudo-polynomial” algorithm for computing the Frobenius number’, Preprint, 2015, arXiv:1510.01973 [math.AC].Google Scholar
Ojeda, I. and Vigneron-Tenorio, A., ‘Simplicial complexes and minimal free resolution of monomial algebras’, J. Pure Appl. Algebra 214 (2010), 850861.CrossRefGoogle Scholar
Pisón Casares, P., ‘The short resolution of a lattice ideal’, Proc. Amer. Math. Soc. 131(4) (2003), 10811091.Google Scholar
Roune, B. H., ‘Solving thousand-digit Frobenius problems using Gröbner bases’, J. Symbolic Comput. 43(1) (2008), 17.Google Scholar