No CrossRef data available.
Article contents
A SHIFTED CONVOLUTION SUM OF $d_{3}$ AND THE FOURIER COEFFICIENTS OF HECKE–MAASS FORMS II
Published online by Cambridge University Press: 26 September 2019
Abstract
Let $d_{3}(n)$ be the divisor function of order three. Let $g$ be a Hecke–Maass form for $\unicode[STIX]{x1D6E4}$ with $\unicode[STIX]{x1D6E5}g=(1/4+t^{2})g$. Suppose that $\unicode[STIX]{x1D706}_{g}(n)$ is the $n$th Hecke eigenvalue of $g$. Using the Voronoi summation formula for $\unicode[STIX]{x1D706}_{g}(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of $d_{3}(n)$ and $\unicode[STIX]{x1D706}_{g}(n)$ and show that
- Type
- Research Article
- Information
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
Footnotes
This project is supported by the National Natural Science Foundation of China (No. 11871193) and the Foundation of Henan University (No. CX3071A0780001).