Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T02:43:18.732Z Has data issue: false hasContentIssue false

SHARPNESS OF SOME PROPERTIES OF WIENER AMALGAM AND MODULATION SPACES

Published online by Cambridge University Press:  19 June 2009

ELENA CORDERO*
Affiliation:
Department of Mathematics, University of Torino, Via Carlo Alberto 10, 10123 Torino, Italy (email: [email protected])
FABIO NICOLA
Affiliation:
Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove sharp estimates for the dilation operator f(x)⟼f(λx), when acting on Wiener amalgam spaces W(Lp,Lq). Scaling arguments are also used to prove the sharpness of the known convolution and pointwise relations for modulation spaces Mp,q, as well as the optimality of an estimate for the Schrödinger propagator on modulation spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1] Bényi, A., Gröchenig, K., Okoudjou, K. A. and Rogers, L. G., ‘Unimodular Fourier multipliers for modulation spaces’, J. Funct. Anal. 246(2) (2007), 366384.CrossRefGoogle Scholar
[2] Bényi, A. and Okoudjou, K. A., ‘Time-frequency estimates for pseudodifferential operators’, in: Harmonic Analysis, Partial Differential Equations, and Related Topics, 13–22 Contemp. Math., 428 (American Mathematical Society, Providence, RI, 2007).Google Scholar
[3] Bényi, A. and Okoudjou, K. A., Local well-posedness of nonlinear dispersive equations on modulation spaces, Preprint, April 2007. Available at ArXiv:0704.0833v1.Google Scholar
[4] Cordero, E. and Gröchenig, K., ‘Time-frequency analysis of localization operators’, J. Funct. Anal. 205(1) (2003), 107131.CrossRefGoogle Scholar
[5] Cordero, E. and Nicola, F., ‘Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation’, J. Funct. Anal. 254 (2008), 506534.CrossRefGoogle Scholar
[6] Cordero, E. and Nicola, F., ‘Some new Strichartz estimates for the Schrödinger equation’, J. Differential Equations 245 (2008), 19451974.CrossRefGoogle Scholar
[7] Cordero, E., Nicola, F. and Rodino, L., Time-frequency analysis of fourier integral operators, Preprint, October 2007. Available atArXiv:0710.3652v1.Google Scholar
[8] Cordero, E., Nicola, F. and Rodino, L., Boundedness of Fourier integral operators on ℱL p spaces, Trans. Amer. Math. Soc. Available at ArXiv:0801.1444.Google Scholar
[9] Feichtinger, H. G., ‘Banach spaces of distributions of Wiener’s type and interpolation’, in: Proc. Conf. Functional Analysis and Approximation, Oberwolfach August 1980, Internat. Ser. Numer. Math., 69  (Birkhäuser, Boston, MA, 1981), pp. 153165.Google Scholar
[10] Feichtinger, H. G., Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, 1983 and also in Wavelets and Their Applications (eds. M. Krishna, R. Radha, S. Thangavelu), (Allied Publishers, New Delhi, 2003), pp. 99–140.Google Scholar
[11] Feichtinger, H. G., ‘Atomic characterizations of modulation spaces through Gabor-type representations, (Proc. Conf. Constructive Function Theory)’, Rocky Mountain J. Math. 19 (1989), 113126.CrossRefGoogle Scholar
[12] Feichtinger, H. G., ‘Generalized amalgams, with applications to Fourier transform’, Canad. J. Math. 42(3) (1990), 395409.CrossRefGoogle Scholar
[13] Feichtinger, H. G. and Kaiblinger, N., ‘Varying the time-frequency lattice of Gabor frames’, Trans. Amer. Math. Soc. 356(5) (2004), 20012023.CrossRefGoogle Scholar
[14] Gröchenig, K., Foundations of Time-Frequency Analysis (Birkhäuser, Boston, MA, 2001).CrossRefGoogle Scholar
[15] Heil, C., ‘An introduction to weighted Wiener amalgams’, in: Wavelets and their Applications (eds. M. Krishna, R. Radha and S. Thangavelu) (Allied Publishers, New Delhi, 2003), pp. 183216.Google Scholar
[16] Okoudjou, K. A., ‘A Beurling–Helson type theorem for modulation spaces’, J. Funct. Spaces Appl. 7(1) (2009), 3341.CrossRefGoogle Scholar
[17] Sugimoto, M. and Tomita, N., ‘The dilation property of modulation spaces and their inclusion relation with Besov spaces’, J. Funct. Anal. 248(1) (2007), 79106.CrossRefGoogle Scholar
[18] Sugimoto, M. and Tomita, N., ‘Boundedness properties of pseudo-differential operators and Calderón–Zygmund operators on modulation spaces’, J. Fourier Anal. Appl. 248(1) (2007), 79106.Google Scholar
[19] Toft, J., ‘Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I’, J. Funct. Anal. 207(2) (2004), 399429.CrossRefGoogle Scholar
[20] Triebel, H., ‘Modulation spaces on the Euclidean n-spaces’, Z. Anal. Anwendungen 2 (1983), 443457.CrossRefGoogle Scholar
[21] Wang, B. and Huang, C., ‘Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations’, J. Differential Equations 239 (2007), 213250.CrossRefGoogle Scholar
[22] Wang, B. and Hudzik, H., ‘The global Cauchy problem for the NLS and NLKG with small rough data’, J. Differential Equations 232 (2007), 3673.CrossRefGoogle Scholar
[23] Wang, B., Zhao, L. and Guo, B., ‘Isometric decomposition operators, function spaces E p,qλ and applications to nonlinear evolution equations’, J. Funct. Anal. 233(1) (2006), 139.Google Scholar