Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:53:47.907Z Has data issue: false hasContentIssue false

The sextic period polynomial

Published online by Cambridge University Press:  17 April 2009

Andrew J. Lazarus
Affiliation:
2745 Elmwood Ave Berkeley CA 94705United States of America
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that the method of calculating the Gaussian period polynomial which originated with Gauss can be replaced by a more general method based on formulas for Lagrange resolvants. The period polynomial of cyclic sextic fields of arbitrary conductor is determined by way of example.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Bachmann, P., Die Lehre von der Kreisteilung (B.G. Teubner, Leipzig and Berlin, 1927).Google Scholar
[2]Buck, N., Smith, L., Spearman, B.K. and Williams, K.S., The cyclotomic numbers of order fifteen, Mathematical Lecture Note Series 6 (Carleton University and Université d'Ottawa, 1985).Google Scholar
[3]Châtelet, A., ‘Arithmétique des corps abéliens du troisième degré’, Ann. Sci. École Norm. Sup. 63 (1946), 109160.CrossRefGoogle Scholar
[4]Evans, R.J., ‘The octic period polynomial’, Proc. Amer. Math. Soc. 87 (1983), 389393.Google Scholar
[5]Gauss, C.F., Theoria residuorum biquadraticorum: Commentatio prima, 2, Werke (Königlichen Gesellschaft der Wissenschaften, Göttingen, 1876). Originally published 1825 pp. 6592.Google Scholar
[6]Hasse, H., Vorlesungen über Zahlentheorie (Springer-Verlag, Berlin, Heidelberg and New York, 1964).CrossRefGoogle Scholar
[7]Hasse, H., Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zykliachen kubischen und biquadratischen Zahlkörpern, Mathematische Abhandlungen 3 (Walter de-Gruyter, Berlin, 1975). Originally published 1950, pp. 285379.Google Scholar
[8]Lazarus, A.J., ‘Gaussian periods and units in certain cyclic fields’, Proc. Amer. Math. Soc. 115 (1992), 961968.CrossRefGoogle Scholar
[9]Lehmer, D.H. and Lehmer, Emma, ‘The sextic period polynomial’, Pacific J. Math. 111 (1984), 341355.CrossRefGoogle Scholar
[10]Lehmer, Emma, ‘The quintic character of 2 and 3’, Duke Math. J. 18 (1951), 1118.CrossRefGoogle Scholar
[11]Lettl, Günter, ‘The ring of integers of an abelian number field’, J. Reine Angew. Math. 404 (1990), 162170.Google Scholar
[12]Mäki, S., The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics 797 (Springer-Verlag, Berlin, Heidelberg and New York, 1980).CrossRefGoogle Scholar
[13]Mathews, G.R., Theory of numbers, Second edition (Chelsea, 1960).Google Scholar
[14]Nakahara, T., ‘On cyclic biquadratic fields related to a problem of Hasse’, Monatsh. Math. 94 (1982), 125132.CrossRefGoogle Scholar
[15]Washington, L.C., Introduction to cyclotomic fields, Graduate Texts in Mathematics 83 (Springer-Verlag, Berlin, Heidelberg and New York, 1982).CrossRefGoogle Scholar