Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T03:02:11.340Z Has data issue: false hasContentIssue false

Semiorderings and Witt rings

Published online by Cambridge University Press:  17 April 2009

Thomas C. Craven
Affiliation:
Department of Mathematics, University of Hawaii, Honolulu, HI 96822–2273, United States of America e-mail: [email protected]
Tara L. Smith
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221–0025, United States of America e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a pythagorean field F with semiordering Q and associated preordering T, it is shown that the Witt ring WT (F) is isomorphic to the Witt ring W (K) whre K is a closure of F with respect to Q. For an arbitrary preordering T, it is shown how the covering number of T relates to the construction of WT (F).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Baer, R., Linear algebra and projective geometry (Academic Press, New York, 1952).Google Scholar
[2]Becker, E., ‘Euklidische Körper und euklidische Hüllen von Körpern’, J. Reine Angew. Math. 268–269 (1974), 4152.Google Scholar
[3]Becker, E. and Köpping, E., ‘Reduzierte quadratische Formen und Semiordnungen reeller Körpern’, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143177.Google Scholar
[4]Bröcker, L., ‘Zur Theorie der quadratischen Formen über formal reellen Körpern’, Math. Ann. 210 (1974), 233256.Google Scholar
[5]Craven, T., ‘The Boolean space of orderings of a field’, Trans. Amer. Math. Soc. 209 (1975), 225235.CrossRefGoogle Scholar
[6]Craven, T., ‘Characterizing reduced Witt rings of fields’, J. Algebra 53 (1978), 6877.Google Scholar
[7]Craven, T., ‘Fields maximal with respect to a set of orderings’, J. Algebra 115 (1988), 200218.CrossRefGoogle Scholar
[8]Craven, T., ‘*-valuations and hermitian forms on skew fields’, in Valuation Theory and its Applications, Vol. 1, Fields Inst. Commun. 32 (Amer. Math. Soc., Providence, RI, 2002), pp. 103115.Google Scholar
[9]Craven, T. and Smith, T., ‘Formally real fields from a Galois theoretic perspective’, J. Pure Appl. Algebra 145 (2000), 1936.CrossRefGoogle Scholar
[10]Craven, T. and Smith, T., ‘Witt ring quotients associated with W-groups’, (unpublished notes).Google Scholar
[11]Efrat, I. and Haran, D., ‘On Galois groups over pythagorean semi-real closed fields’, Israel J. Math. 85 (1994), 5778.Google Scholar
[12]Endler, O., Valuation theory (Springer–Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[13]Jacob, B. and Ware, R., ‘A recursive description of the maximal pro-2 Galois group via Witt rings’, Math. Z. 200 (1989), 379396.Google Scholar
[14]Jacobi, T. and Prestel, A., ‘Distinguished representations of strictly positive polynomialsJ. Reine Angew. Math. 532 (2001), 223235.Google Scholar
[15]Lam, T.Y., Orderings, valuations and quadratic forms, Conference Board of the Mathematical Sciences 52 (Amer. Math. Soc., Providence, RI, 1983).CrossRefGoogle Scholar
[16]Marshall, M., Abstract Witt rings, Queens's Papers in Pure and Appl. Math. 57 (Queens's University, Kingston, Ontario, 1980).Google Scholar
[17]Marshall, M., Spaces of orderings and abstract real spectra, Lecture Notes in Math. 1636 (Springer–Verlag, Berlin, Heidelberg, New York, 1996).Google Scholar
[18]Minác, J. and Smith, T., ‘Decomposition of Witt rings and Galois groups’, Canad. J. Math 47 (1995), 12741289.CrossRefGoogle Scholar
[19]Miná, J. and Spira, M., ‘Witt rings and Galois groups’, Ann. of Math. 144 (1996), 3560.Google Scholar
[20]Prestel, A., Lectures on formally real fields, Lecture Notes in Math. 1093 (Springer–Verlag, Berlin, Heidelberg, New York, 1984).Google Scholar
[21]Prestel, A. and Delzell, C., Positive polynomials: from Hilbert's 17th problem to real algebra, Springer Monographs in Math. (Springer–Verlag, Berlin, Heidelberg, New York, 2001).Google Scholar