Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T21:37:56.641Z Has data issue: false hasContentIssue false

Saturated formations and Sylow normalisers

Published online by Cambridge University Press:  17 April 2009

A. D'Aniello
Affiliation:
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Fderico II”Complesso Monte S. Angelo, Edificio T, via Cintia, 80125 Napoli, Italy, e-mail: [email protected], [email protected], [email protected]
C. De Vivo
Affiliation:
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Fderico II”Complesso Monte S. Angelo, Edificio T, via Cintia, 80125 Napoli, Italy, e-mail: [email protected], [email protected], [email protected]
G. Giordano
Affiliation:
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Fderico II”Complesso Monte S. Angelo, Edificio T, via Cintia, 80125 Napoli, Italy, e-mail: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sufficient conditions are provided in order that some classes of finite soluble groups, defined by properties of the Sylow normalisers, are saturated formations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1] Ballester-Bolinches, A. and Shemetkov, L.A., ‘On Normalizers of Sylow Subgroups in Finite Groups’, Siberian Math. J. 40 1999, 12.CrossRefGoogle Scholar
[2] Bianchi, M.G., Mauri, A. Gillio Berta and Hauck, P., ‘On finite groups with nilpotent Sylow normalizers’, Arch. Math. 47 1986, 193197.CrossRefGoogle Scholar
[3] Bryce, R.A., Fedri, V. and Serena, L., ‘Bounds on the Fitting length of finite soluble groups with supersoluble Sylow normalizers’, Bull. Austral. Math. Soc. 44 1991, 1931.CrossRefGoogle Scholar
[4] Doerk, K. and Hawkes, T., Finite soluble groups, de Gruyter Expositions in Maths. 4 (W. de Gruyter, Berlin, 1992).CrossRefGoogle Scholar
[5] Fedri, V. and Serena, L., ‘Finite soluble groups with supersoluble Sylow normalizers’, Arch. Math. 50 1988, 1118.CrossRefGoogle Scholar
[6] Glaubermann, G., ‘Prime-power factor groups of finite groups II.’, Math. Z. 117 1970, 4656.CrossRefGoogle Scholar
[7] Huppert, B., ‘Zur Gaschützschen theorie der formationen’, Math. Ann. 164 1966, 133141.CrossRefGoogle Scholar
[8] Huppert, B., Endliche Gruppen I (Springer Verlag, Berlin, New York, 1967).CrossRefGoogle Scholar