Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T17:22:39.679Z Has data issue: false hasContentIssue false

THE ROSENTHAL–SZASZ INEQUALITY FOR NORMED PLANES

Published online by Cambridge University Press:  29 August 2018

VITOR BALESTRO*
Affiliation:
CEFET/RJ, Campus Nova Friburgo, 28635000 Nova Friburgo, Brazil email [email protected]
HORST MARTINI
Affiliation:
Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the classical Rosenthal–Szasz inequality for a plane whose geometry is determined by a norm. This inequality states that the bodies of constant width have the largest perimeter among all planar convex bodies of given diameter. In the case where the unit circle of the norm is given by a Radon curve, we obtain an inequality which is completely analogous to the Euclidean case. For arbitrary norms we obtain an upper bound for the perimeter calculated in the anti-norm, yielding an analogous characterisation of all curves of constant width. To derive these results, we use methods from the differential geometry of curves in normed planes.

Type
Research Article
Copyright
© 2018 Australian Mathematical Publishing Association Inc. 

References

Alonso, J., Martini, H. and Wu, S., ‘On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces’, Aequationes Math. 83 (2012), 153189.Google Scholar
Balestro, V., Martini, H. and Shonoda, E., ‘Concepts of curvatures in normed planes’, Expo. Math. (2018), to appear, https://arxiv.org/abs/1702.01449.Google Scholar
Barbier, E., ‘Note sur le problème de l’aiguille et le jeu du joint couvert’, J. Math. Pures Appl. (9) 5 (1860), 273286.Google Scholar
Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper (Springer, Berlin, 1934, 1974), English translation: Theory of Convex Bodies (eds. L. Boron, C. Christenson and B. Smith) (BCS Associates, Moscow, Idaho, 1987).Google Scholar
Buchin, S., Lectures on Differential Geometry (World Scientific, Singapore, 1980).Google Scholar
Cifre, M. A. H. and Fernández, A. R. M., ‘The isodiametric problem and other inequalities in the constant curvature 2-spaces’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109(2) (2015), 315325.Google Scholar
Kim, Y. I. and Chai, Y. D., ‘Geometric properties of curves in the Minkowski plane’, Honam Math. J. 19 (1997), 107116.Google Scholar
Martini, H. and Mustafaev, Z., ‘On Reuleaux triangles in Minkowski planes’, Beiträge Algebra Geom. 48 (2007), 225235.Google Scholar
Martini, H. and Swanepoel, K. J., ‘Antinorms and Radon curves’, Aequationes Math. 72(1–2) (2006), 110138.Google Scholar
Martini, H. and Wu, S., ‘Classical curve theory in normed planes’, Comput. Aided Geom. Design 31(7–8) (2014), 373397.Google Scholar
Miernowski, A. and Mozgawa, W., ‘On the curves of constant relative width’, Rend. Semin. Mat. Univ. Padova 107 (2002), 5765.Google Scholar
Mossinghoff, M. J., ‘A $1 problem’, Amer. Math. Monthly 113 (2006), 385402.Google Scholar
Petty, C. M., ‘On the geometry of the Minkowski plane’, Riv. Mat. Univ. Parma (8) 6 (1955), 269292.Google Scholar
Rosenthal, A. and Szasz, O., ‘Eine Extremaleigenschaft der Kurven konstanter Breite’, Jahresber. Deutsch. Math.-Verein. 25 (1916), 278282.Google Scholar
Thompson, A. C., Minkowski Geometry, Encyclopedia of Mathematics and its Applications, 63 (Cambridge University Press, Cambridge, 1996).Google Scholar