Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T05:48:26.205Z Has data issue: false hasContentIssue false

Restricted weak upper semicontinuous differentials of convex functions

Published online by Cambridge University Press:  17 April 2009

Julio Benítez
Affiliation:
Depto. Matemática Aplicada, (ETSIT), Apartado 22012, E-46071 Valencia, Spain, e-mail: [email protected]
Vicente Montesinos
Affiliation:
Depto. Matemática Aplicada, (ETSIT), Apartado 22012, E-46071 Valencia, Spain, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise restricted weak upper semicontinuity of the subdifferential of convex functions in terms of the Fenchel biconjugate mapping.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Aparicio, C., Ocaña, F., Payá, R. and Rodríguez, A., ‘A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges’, Glasgow Math. J. 28 (1986), 121137.CrossRefGoogle Scholar
[2]Benítez, J. and Montesinos, V., ‘On restricted weak upper semicontinuous set valued mappings and reflexivity’, Bol. Un. Mat. Ital. 8 (1999), 577583.Google Scholar
[3]Brezis, H., Analyse fonctionelle: Theorie et applications, (Collections of Applied Mathematics for the Masters degree) (Masson et Cie., 1983).Google Scholar
[4]Contreras, M. D. and Payá, R., ‘On upper semicontinuity of duality mappings’, Proc. Amer. Math. Soc. 121 (1994), 451459.CrossRefGoogle Scholar
[5]Franchetti, C. and Payá, R., ‘Banach spaces with strongly subdifferentiable norm’, Bol. Un. Mat. Ital. 7 (1993), 4570.Google Scholar
[6]Giles, J., Gregory, D. and Sims, B., ‘Geometrical implications of upper semicontinuity of the duality mapping on a Banach space’, Pacific J. Math. 79 (1978), 99108.CrossRefGoogle Scholar
[7]Giles, J. and Moors, W. B., ‘Generic continuity of restricted weak upper semicontinuous set valued mappings’, Set Valued Anal. 4 (1996), 2539.CrossRefGoogle Scholar
[8]Giles, J. and Sciffer, S., ‘Fréchet directional differentiability and Fréchet differentiability’, Comment. Math. Univ. Carotin. 37 (1996), 489497.Google Scholar
[9]Godefroy, G., Some applications of Simons' inequality, Seminar of Functional Analysis. Vol 1 (Universidad de Murcia, 1987).Google Scholar
[10]Godefroy, G., Montesinos, V. and Zizler, V., ‘Strong subdifferentiability of norms and geometry of Banach spaces’, Comment. Math. Univ. Carotin 36 (1995), 493502.Google Scholar
[11]Phelps, R., Convex functions, monotone operators and differentiability (2nd ed.), Lecture Notes in Math. 1364 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).Google Scholar