Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T06:56:40.502Z Has data issue: false hasContentIssue false

Restricted Lie algebras of maximal class

Published online by Cambridge University Press:  17 April 2009

D.M. Riley
Affiliation:
Department of Mathematics, The University of Alabama, Tuscaloosa AL 35487-0350, United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L be a possibly infinite-dimensional Lie algebra of maximal class. We show that if L admits the structure of a Lie p-algebra then the dimension of L can be at most p + 1. Furthermore, this bound is best possible.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Alperin, J.L., ‘Automorphisms of solvable groups’, Proc. Amer. Math. Soc. 13 (1962), 175180.CrossRefGoogle Scholar
[2]Blackburn, N., ‘On a special class of p-groups’, Acta Math. 100 (1958), 4992.CrossRefGoogle Scholar
[3]Caranti, A., Mattarei, S. and Newman, M.F., ‘Graded Lie algebras of maximal class’, Trans. Amer. Math. Soc. 349 (1997), 40214051.CrossRefGoogle Scholar
[4]Riley, D.M. and Semple, J.F., ‘The coclass of a restricted Lie algebra’, Bull. London Math. Soc. 26 (1994), 431437.CrossRefGoogle Scholar
[5]Riley, D.M. and Semple, J.F., ‘Power closure and the Engel condition’, Israel J. Math. 97 (1997), 281291.CrossRefGoogle Scholar
[6]Shalev, A., ‘The structure of finite p-groups: effective proof of the coclass conjectures’, Invent. Math. 115 (1994), 315345.CrossRefGoogle Scholar
[7]Shalev, A., ‘Simple Lie algebras and Lie algebras of maximal class’, Arch. Math. 63 (1994), 297301.CrossRefGoogle Scholar
[8]Shalev, A. and Zelmanov, E.I., ‘Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra’, J. Algebra 189 (1997), 294331.CrossRefGoogle Scholar
[9]Vergne, M., Varétés des Algebrés de Lie Nilpotente, Thésis (Fac. Sci. de Paris, France, 1996).Google Scholar
[10]Vergne, M., ‘Réductibilité de la variété des algebrés de Lie nilpotentes’, C.R. Acad. Sci. Paris Sér I Math. 263 (1966), 46.Google Scholar
[11]Vergne, M., ‘Cohomologie des algebres de Lie nilpotentes. Application á l'étude de la variété des algebrés de Lie nilpotentes’, C.R. Acad. Sci. Paris Sér I Math. 267 (1968), 867870.Google Scholar