Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:07:32.147Z Has data issue: false hasContentIssue false

A REMARK ON THE PERMUTATION REPRESENTATIONS AFFORDED BY THE EMBEDDINGS OF ${ \text{O} }_{2m}^{\pm } ({2}^{f} )$ IN ${\text{Sp} }_{2m} ({2}^{f} )$

Published online by Cambridge University Press:  19 September 2013

SIMON GUEST*
Affiliation:
Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ, UK
ANDREA PREVITALI
Affiliation:
Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy email [email protected]
PABLO SPIGA
Affiliation:
Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the permutation module over $ \mathbb{C} $ afforded by the action of ${\mathrm{Sp} }_{2m} ({2}^{f} )$ on its natural module is isomorphic to the permutation module over $ \mathbb{C} $ afforded by the action of ${\mathrm{Sp} }_{2m} ({2}^{f} )$ on the union of the right cosets of ${ \mathrm{O} }_{2m}^{+ } ({2}^{f} )$ and ${ \mathrm{O} }_{2m}^{- } ({2}^{f} )$.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Cameron, P. J., Permutation Groups, London Mathematical Society Student Texts, 45 (Cambridge University Press, Cambridge, 1999).Google Scholar
Cameron, P. J. and van Lint, J. H., Designs, Graphs, Codes and Their Links, London Mathematical Society Student Texts, 22 (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).Google Scholar
Dye, R. H., ‘Interrelations of symplectic and orthogonal groups in characteristic two’, J. Algebra 59 (1979), 202221.Google Scholar
Förster, P. and Kovács, L. G., ‘A problem of Wielandt on finite permutation groups’, J. Lond. Math. Soc. (2) 41 (1990), 231243.CrossRefGoogle Scholar
Gow, R., ‘Products of two involutions in classical groups of characteristic 2’, J. Algebra 71 (1981), 583591.CrossRefGoogle Scholar
Guralnick, R. M. and Saxl, J., Primitive Permutation Characters, London Mathematical Society Lecture Note Series, 165 (Cambridge University Press, Cambridge, 1992), 364376.Google Scholar
Inglis, N. F. J., ‘The embedding $\mathrm{O} (2m, {2}^{k} )\leq \mathrm{Sp} (2m, {2}^{k} )$’, Arch. Math. 54 (1990), 327330.CrossRefGoogle Scholar
Kleidman, P. and Liebeck, M., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Notes, 129 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Liebeck, M. W., ‘Permutation modules for rank 3 symplectic and orthogonal groups’, J. Algebra 92 (1985), 915.Google Scholar
Serre, J. P., Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42 (Springer, New York, 1977).CrossRefGoogle Scholar
Siemons, J. and Zalesskii, A., ‘Regular orbits of cyclic subgroups in permutation representations of certain simple groups’, J. Algebra 256 (2002), 611625.Google Scholar
Spiga, P., ‘Permutation characters and fixed-point-free elements in permutation groups’, J. Algebra 299 (2006), 17.CrossRefGoogle Scholar
Wielandt, H., ‘Problem 6.6, the Kourovka notebook’, Amer. Math. Soc. Transl. Ser. (2) 121 (1983).Google Scholar