Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:19:45.518Z Has data issue: false hasContentIssue false

Radii of univalence, starlikeness, and convexity

Published online by Cambridge University Press:  17 April 2009

Shinji Yamashita
Affiliation:
Department of Mathematics, Tokyo Metropolitan University, Fukazawa, Setagaya, Tokyo 158, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let a function be regular in the disk |z| < 1. The radius of univalence 0.164 … of the family of f with |an| ≤ n (n ≥ 2) is, actually, the radius of star-likeness. The radius of univalence 1 - [k/(l+K)]½ of the family of f with |an| ≤ k (n ≥ 2), where K > 0 is a constant, is, actually, the radius of starlikeness. The radii of convexity of the two families are estimated from below.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Авхадиев, Ф.Г., Ансентьев, Л.А., “Основные результаты в достаточных условиях однолистности аналитичесних фуннций”, Uspehi Mat. Nauk 30 (1975) no. 4, 360. English translation: F.G. Avhadiev, L.A. Aksent'ev “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys 30 (1975), no. 4, 1–63.Google ScholarPubMed
[2]Clunie, J. and Keogh, F.R., “On starlike and convex schlicht functions”, J. London Math. Soc. 35 (1960), 229233.Google Scholar
[3]Гаврилов, В.и. [Gavrilov, V.I.], “Замечания о однолистности голоморфных” [Remarks on the radius of univalence of holomorphic functions”, Mat. Zametki 7 (1970), 295298.Google Scholar
[4]Goodman, A.W., ”Univalent functions and nonanalytic curves”, Proc. Amer. Math. Soc. 8 (1957), 598601.Google Scholar