Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T08:53:57.453Z Has data issue: false hasContentIssue false

Radical extensions and crossed homomorphisms

Published online by Cambridge University Press:  17 April 2009

Fernando Barrera-Mora
Affiliation:
Departamento de Matemáticas, Escuela Superior de Física y Matemáticas del I.P.N., Edificio 9 Unidad Profesional ALM, Zacatenco, CP 07300 México, D.F., México e-mail: [email protected]@esfm.ipn.mx
Pablo Lam-Estrada
Affiliation:
Departamento de Matemáticas, Escuela Superior de Física y Matemáticas del I.P.N., Edificio 9 Unidad Profesional ALM, Zacatenco, CP 07300 México, D.F., México e-mail: [email protected]@esfm.ipn.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If Ω/F is a Galois extension with Galois G and μ(Ω) denotes the group of roots of unity in Ω, we use the group Z1 (G,μ(Ω)) of crossed homomorphisms to study radical extensions inside Ω. Furthermore, we characterise cubic radical extension, and we provide an example to show that this result can not extended for higher degree extensions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Albu, T. and Nicolae, F., ‘Kneser field extensions with cogalois correspondence’, J. Number Theory 52 (1995), 299318.Google Scholar
[2]Barrera-Mora, F., ‘On Subfields of Radical Extensions’, Comm. Algebra 27 (1999), 46414649.CrossRefGoogle Scholar
[3]Barrera-Mora, F., Rzedowski-Calderón, M. and Villa-Salvador, G., ‘On Cogalois extensions’, J. Pure Appl. Algebra 76 (1991), 111.Google Scholar
[4]Barrera-Mora, F. and Vélez, W.Y., ‘Some results on radical extensions’, J. Algebra 162 (1993), 295301.Google Scholar
[5]Isaacs, I.M. and Moulton, D.P., ‘Real fields and repeated radical extensions’, J. Algebra 201 (1998), 429455.CrossRefGoogle Scholar
[6]Washington, L.C., Introduction to cyclotomic fields, Graduate Texts in Maths 83 (Springer-Verlag, New York, Berlin, Heidelberg, 1982).Google Scholar