Published online by Cambridge University Press: 17 April 2009
Let R be an integral domain with quotient field Q. We investigate quasi- and Q-projective ideals, and properties of domains all ideals of which are quasi-projective. It is shown that the so-called l½-generated ideals are quasi-projective, moreover, projective. A module M is quasi-projective if and only if, for a projective ideal P of R, the tensor product M ⊗RP is quasi-projective. Domains whose all ideals are quasi-projective are characterised as almost maximal Prüfer domains. Q is quasi-projective if and only if every proper submodule of Q is complete in its R-topology.