Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T23:58:01.367Z Has data issue: false hasContentIssue false

Pseudo-autonomous linear systems

Published online by Cambridge University Press:  17 April 2009

W.A. Coppel
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pseudo-autonomous linear differential equations are defined. A linear differential equation with bounded coefficient matrix is pseudo-autonomous if and only if it is almost reducible. A linear differential equation with recurrent coefficient matrix is pseudo-autonomous if and only if it has pure point spectrum.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

[1]Былов, Б.Ф. [Bylov, B.F.], “Лочти приводимые системы дифференциальных уравнений” [Almost reducible systems of differential equations], Sibirsk. Mat. Ž. 3 (1962), 333359.Google ScholarPubMed
[2]Coppel, W.A., “Dichotomies and reducibility”, J. Differential Equations 3 (1967), 500521.CrossRefGoogle Scholar
[3]Миллионщиков, В.М. [V.M. Millionščikov], “О связи между устойчиостыо характеристичеких показателей и почти приводимостю систем почти периодическими коэффициентами” [The connection between the stability of characteristic exponents and almost reducibility of systems with almost periodic coefficients], Differencial'nye Uravnenija 3 (1967), 21272134.Google ScholarPubMed
[4]Миллионщиков, В.М. [V.M. Millionščikov], “Критерий устойчивости вероятного спектра линейных систем дифференциальных уравнений с рекуррентными козффициентами и критерий поути приводимости систем с почти периодическими козффициентами” [A criterion for the stability of the probable spectrum of linear systems of differential equations with recurrent coefficients and a criterion for the almost reducibility of systems with almost periodic coefficients], Mat. Sb. (N.S.) 78 (1969), 179201.Google ScholarPubMed
[5]Миллионщиков, В.М. [V.M. Millionščikov]. “Доказательство существования неправильных систем линейных дифференциальных уравнений с квазипериодическнмн нозффициентами” [A proof of the existence of irregular systems of linear differential equations with quasi-periodic coefficients], Differencial'nye Uravnenija 5 (1969). 19791983.Google ScholarPubMed
[6]Sacker, Robert J. and Sell, George R., “A spectral theory for linear almost periodic differential equations”, International Conference on Differential Equations, 698708 (Proc. Internat. Conf. Differential Equations, Los Angeles, California, 1974. Academic Press [Harcourt Brace Jovanovich], New York, London, 1975).Google Scholar