No CrossRef data available.
Article contents
Properties of the trajectories of set-valued integrals in banach spaces
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let F: T → 2x \ {} be a closed-valued multifunction into a separable Banach space X. We define the sets and We prove various convergence theorems for those two sets using the Hausdorff metric and the Kuratowski-Mosco convergence of sets. Then we prove a density theorem of CF and a corresponding convexity theorem for F(·). Finally we study the “differentiability” properties of K(·). Our work extends and improves earlier ones by Artstein, Bridgland, Hermes and Papageorgiou.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1990
References
[1]Artstein, Z., ‘On the calculus of closed set-valued functions’, Indiana Univ. Math. J. 24 (1974), 433–411.CrossRefGoogle Scholar
[2]Aubin, J.-P. and Cellina, A., Differential inclusion (Springer-Verlag, Berlin, Heidelberg, New York, 1984).CrossRefGoogle Scholar
[3]Bridgland, T.F., ‘Trajectory integrals of set valued functions’, Pacific J. Math. 33 (1970), 43–68.CrossRefGoogle Scholar
[4]Chuong, P.V., ‘Some results on density of extreme selections for measurable multifunctions’, Math. Nachr 126 (1986), 310–326.Google Scholar
[5]Costé, A., ‘La proprieté de Radon-Nikodym en integration multivoque’, C.R. Acad. Sci. Paris 280 (1975), 1515–1518.Google Scholar
[6]DeBlasi, F., ‘On the differentiability of multifunctions’, Pacific J. Math. 66 (1976), 67–81.CrossRefGoogle Scholar
[7]Hermes, H., ‘Calculus of set valued functions and control’, J. Math. Mech. 18 (1968), 47–60.Google Scholar
[8]Hiai, F. and Umegaki, H., ‘Integrals, conditional expectations and martingales of multivalued functions’, J. Multivariate Anal. 7 (1977), 149–182.CrossRefGoogle Scholar
[10]Papageorgiou, N.S., ‘Trajectories of set valued integrals’, Bull. Austral. Math. Soc. 31 (1985), 389–412.CrossRefGoogle Scholar
[11]Papageorgiou, N.S., ‘On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectations’, J. Multivarate Anal. 17 (1985), 185–206.CrossRefGoogle Scholar
[12]Papageorgiou, N.S., ‘Convergence theorems for Banach space valued integrable multifunctions’, Internat. J. Math. Math. Sci. 10 (1987), 433–442.CrossRefGoogle Scholar
[13]Richter, H., ‘Verallgemeinerug eines in der Statistik benötigten satzes der masstheorie’, Math. Ann. 150 (1963), 85–90.CrossRefGoogle Scholar
[14]Salinetti, G. and Wets, R., ‘On the convergence of sequences of convex sets in finite dimensions’, SIAM Rev 21 (1979), 18–33.CrossRefGoogle Scholar
[15]Tsukada, M., ‘Convergence of best approximations in a sooth Banach space’, J. Approx. Theory 40 (1984), 301–309.CrossRefGoogle Scholar
[16]Wagner, D., ‘Survey of measurable selections’, SIAM J. Control Optim. 15 (1977), 857–903.CrossRefGoogle Scholar
You have
Access