No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
Let F: T → 2x \ {} be a closed-valued multifunction into a separable Banach space X. We define the sets and We prove various convergence theorems for those two sets using the Hausdorff metric and the Kuratowski-Mosco convergence of sets. Then we prove a density theorem of CF and a corresponding convexity theorem for F(·). Finally we study the “differentiability” properties of K(·). Our work extends and improves earlier ones by Artstein, Bridgland, Hermes and Papageorgiou.